Loading…
Simulation of Pharmaceutical and Personal Care Product Transport to Tile Drains after Biosolids Application
Pharmaceuticals and personal care products (PPCPs) carried in biosolids may reach surface waters or ground water when these materials are applied as fertilizer to agricultural land. During preferential flow conditions created by land application of liquid municipal biosolids (LMB), the residence tim...
Saved in:
Published in: | Journal of environmental quality 2009-05, Vol.38 (3), p.1274-1285 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pharmaceuticals and personal care products (PPCPs) carried in biosolids may reach surface waters or ground water when these materials are applied as fertilizer to agricultural land. During preferential flow conditions created by land application of liquid municipal biosolids (LMB), the residence time of solutes in the macropores may be too short for sorption equilibration. The physically based dual-permeability model MACRO is used in environmental risk assessments for pesticides and may have potential as an environmental risk assessment tool for PPCPs. The objective of this study was to evaluate MACRO and an updated version of MACRO that included non-equilibrium sorption in macropores using data from experiments conducted in eastern Ontario, Canada on the transport of three PPCPs (atenolol, carbamazepine, and triclosan), the nicotine metabolite cotinine, and the strongly sorbing dye rhodamine WT applied in LMB. Results showed that the MACRO model could not reproduce the measured rhodamine WT concentrations (Nash-Sutcliffe coefficient [NS] for the best simulation = -0.057) in drain discharge. The updated version resulted in better fits to measured data for PPCP (average NS = 0.97) and rhodamine WT (NS = 0.84) concentrations. However, it was not possible to simulate all compounds using the same set of hydraulic parameters, which indicates that the model does not fully account for all relevant processes. The results presented herein show that non-equilibrium sorption in macropores has a large impact on simulated solute transport for reactive compounds contained in LMB. This process should be considered in solute transport models that are used for environmental risk assessments for such compounds. |
---|---|
ISSN: | 0047-2425 1537-2537 1537-2537 |
DOI: | 10.2134/jeq2008.0301 |