Loading…
Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate
Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion...
Saved in:
Published in: | Planta 2014-04, Vol.239 (4), p.901-908 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3 |
container_end_page | 908 |
container_issue | 4 |
container_start_page | 901 |
container_title | Planta |
container_volume | 239 |
creator | Maougal, Rim Tinhinen Bargaz, Adnane Sahel, Charaf Amenc, Laurie Djekoun, Abdelhamid Plassard, Claude Drevon, Jean-Jacques |
description | Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C₆H₁₈O₂₄P₆) or 75 μmol Pi (K₂HPO₄), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere. |
doi_str_mv | 10.1007/s00425-013-2023-9 |
format | article |
fullrecord | <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_51223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43564260</jstor_id><sourcerecordid>43564260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEoqXwAByASFzgEBj_TXJsK6BIK4EEPVuO19n1yhsH22lVXoDXZqIsK-CAONme-c0349FXFE8JvCEA9dsEwKmogLCKAmVVe684JZxRfPHmfnEKgHdomTgpHqW0A8BkXT8sTijnUAtCTosfq2C0d991dmEoQ1_mrS0vtHHeT6lMU5edd6nsbNbVGMNovbexHLd3WSdb5qiHZKIbcyrdUA5hPXmd7bqMIWAI5T5vkQuz1s3kNzq6WXQcvUPo1uXtIpXt4-JBr32yTw7nWXH9_t3Xy6tq9enDx8vzVWUEZbniHeuM4UQ0zDBObK9bQwUQIBaatQbRt42sQZpOa1330MmWtbxvpWwlgd6ws6JadNOtHadOjdHtdbxTQTuV_NTpOB8qWSUIpQz51wu_1f4P-Op8peYYECob3ogbguyrhcVFfZtsymrvksGN6cGGKSlS11LyBsh_oAIaTlndSkRf_oXuwhQHXNJM1ZJzwVqkyEKZGFKKtj8OS0DNZlGLWXBepmazqLnm-UF56vZ2faz45Q4E6GFZmBo2Nv7W-h-qz5aiXcohHkU5E5JTCZh_seR7HZTeoCPU9ReK1gTAP0ts-xOr8t3M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507644539</pqid></control><display><type>article</type><title>Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Link</source><creator>Maougal, Rim Tinhinen ; Bargaz, Adnane ; Sahel, Charaf ; Amenc, Laurie ; Djekoun, Abdelhamid ; Plassard, Claude ; Drevon, Jean-Jacques</creator><creatorcontrib>Maougal, Rim Tinhinen ; Bargaz, Adnane ; Sahel, Charaf ; Amenc, Laurie ; Djekoun, Abdelhamid ; Plassard, Claude ; Drevon, Jean-Jacques ; Sveriges lantbruksuniversitet</creatorcontrib><description>Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C₆H₁₈O₂₄P₆) or 75 μmol Pi (K₂HPO₄), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.</description><identifier>ISSN: 0032-0935</identifier><identifier>ISSN: 1432-2048</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-013-2023-9</identifier><identifier>PMID: 24407511</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>6-Phytase - genetics ; 6-Phytase - metabolism ; Acid soils ; Agricultural sciences ; Agricultural soils ; Agriculture ; Bacillus subtilis ; Bacillus subtilis - enzymology ; Bacillus subtilis - genetics ; Bacteria ; Biomedical and Life Sciences ; cortex ; Ecology ; endophytes ; excretion ; Forestry ; genes ; inbred lines ; Legumes ; Life Sciences ; Nitrogen Fixation ; Nodulation ; Nodules ; Organic phosphorus ; Original Article ; Phaseolus - cytology ; Phaseolus - growth & development ; Phaseolus - microbiology ; Phaseolus vulgaris ; Phosphorus ; Phosphorus - metabolism ; phytases ; phytic acid ; Phytic Acid - metabolism ; Plant Biotechnology ; Plant growth ; Plant Root Nodulation ; Plant roots ; Plant Roots - cytology ; Plant Roots - growth & development ; Plant Roots - microbiology ; Plant Sciences ; Plant Shoots - cytology ; Plant Shoots - growth & development ; Plant Shoots - microbiology ; Plants ; reverse transcriptase polymerase chain reaction ; Rhizobium tropici ; Rhizosphere ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; root tips ; Symbiosis ; Vegetal Biology ; Växtbioteknologi</subject><ispartof>Planta, 2014-04, Vol.239 (4), p.901-908</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3</citedby><cites>FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3</cites><orcidid>0000-0002-5844-438X ; 0009-0002-3913-5423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43564260$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43564260$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24407511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01268485$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/51223$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Maougal, Rim Tinhinen</creatorcontrib><creatorcontrib>Bargaz, Adnane</creatorcontrib><creatorcontrib>Sahel, Charaf</creatorcontrib><creatorcontrib>Amenc, Laurie</creatorcontrib><creatorcontrib>Djekoun, Abdelhamid</creatorcontrib><creatorcontrib>Plassard, Claude</creatorcontrib><creatorcontrib>Drevon, Jean-Jacques</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C₆H₁₈O₂₄P₆) or 75 μmol Pi (K₂HPO₄), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.</description><subject>6-Phytase - genetics</subject><subject>6-Phytase - metabolism</subject><subject>Acid soils</subject><subject>Agricultural sciences</subject><subject>Agricultural soils</subject><subject>Agriculture</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - enzymology</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>cortex</subject><subject>Ecology</subject><subject>endophytes</subject><subject>excretion</subject><subject>Forestry</subject><subject>genes</subject><subject>inbred lines</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Nitrogen Fixation</subject><subject>Nodulation</subject><subject>Nodules</subject><subject>Organic phosphorus</subject><subject>Original Article</subject><subject>Phaseolus - cytology</subject><subject>Phaseolus - growth & development</subject><subject>Phaseolus - microbiology</subject><subject>Phaseolus vulgaris</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>phytases</subject><subject>phytic acid</subject><subject>Phytic Acid - metabolism</subject><subject>Plant Biotechnology</subject><subject>Plant growth</subject><subject>Plant Root Nodulation</subject><subject>Plant roots</subject><subject>Plant Roots - cytology</subject><subject>Plant Roots - growth & development</subject><subject>Plant Roots - microbiology</subject><subject>Plant Sciences</subject><subject>Plant Shoots - cytology</subject><subject>Plant Shoots - growth & development</subject><subject>Plant Shoots - microbiology</subject><subject>Plants</subject><subject>reverse transcriptase polymerase chain reaction</subject><subject>Rhizobium tropici</subject><subject>Rhizosphere</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>root tips</subject><subject>Symbiosis</subject><subject>Vegetal Biology</subject><subject>Växtbioteknologi</subject><issn>0032-0935</issn><issn>1432-2048</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNks9u1DAQxiMEoqXwAByASFzgEBj_TXJsK6BIK4EEPVuO19n1yhsH22lVXoDXZqIsK-CAONme-c0349FXFE8JvCEA9dsEwKmogLCKAmVVe684JZxRfPHmfnEKgHdomTgpHqW0A8BkXT8sTijnUAtCTosfq2C0d991dmEoQ1_mrS0vtHHeT6lMU5edd6nsbNbVGMNovbexHLd3WSdb5qiHZKIbcyrdUA5hPXmd7bqMIWAI5T5vkQuz1s3kNzq6WXQcvUPo1uXtIpXt4-JBr32yTw7nWXH9_t3Xy6tq9enDx8vzVWUEZbniHeuM4UQ0zDBObK9bQwUQIBaatQbRt42sQZpOa1330MmWtbxvpWwlgd6ws6JadNOtHadOjdHtdbxTQTuV_NTpOB8qWSUIpQz51wu_1f4P-Op8peYYECob3ogbguyrhcVFfZtsymrvksGN6cGGKSlS11LyBsh_oAIaTlndSkRf_oXuwhQHXNJM1ZJzwVqkyEKZGFKKtj8OS0DNZlGLWXBepmazqLnm-UF56vZ2faz45Q4E6GFZmBo2Nv7W-h-qz5aiXcohHkU5E5JTCZh_seR7HZTeoCPU9ReK1gTAP0ts-xOr8t3M</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Maougal, Rim Tinhinen</creator><creator>Bargaz, Adnane</creator><creator>Sahel, Charaf</creator><creator>Amenc, Laurie</creator><creator>Djekoun, Abdelhamid</creator><creator>Plassard, Claude</creator><creator>Drevon, Jean-Jacques</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>1XC</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-5844-438X</orcidid><orcidid>https://orcid.org/0009-0002-3913-5423</orcidid></search><sort><creationdate>20140401</creationdate><title>Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate</title><author>Maougal, Rim Tinhinen ; Bargaz, Adnane ; Sahel, Charaf ; Amenc, Laurie ; Djekoun, Abdelhamid ; Plassard, Claude ; Drevon, Jean-Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>6-Phytase - genetics</topic><topic>6-Phytase - metabolism</topic><topic>Acid soils</topic><topic>Agricultural sciences</topic><topic>Agricultural soils</topic><topic>Agriculture</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - enzymology</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>cortex</topic><topic>Ecology</topic><topic>endophytes</topic><topic>excretion</topic><topic>Forestry</topic><topic>genes</topic><topic>inbred lines</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Nitrogen Fixation</topic><topic>Nodulation</topic><topic>Nodules</topic><topic>Organic phosphorus</topic><topic>Original Article</topic><topic>Phaseolus - cytology</topic><topic>Phaseolus - growth & development</topic><topic>Phaseolus - microbiology</topic><topic>Phaseolus vulgaris</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>phytases</topic><topic>phytic acid</topic><topic>Phytic Acid - metabolism</topic><topic>Plant Biotechnology</topic><topic>Plant growth</topic><topic>Plant Root Nodulation</topic><topic>Plant roots</topic><topic>Plant Roots - cytology</topic><topic>Plant Roots - growth & development</topic><topic>Plant Roots - microbiology</topic><topic>Plant Sciences</topic><topic>Plant Shoots - cytology</topic><topic>Plant Shoots - growth & development</topic><topic>Plant Shoots - microbiology</topic><topic>Plants</topic><topic>reverse transcriptase polymerase chain reaction</topic><topic>Rhizobium tropici</topic><topic>Rhizosphere</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>root tips</topic><topic>Symbiosis</topic><topic>Vegetal Biology</topic><topic>Växtbioteknologi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maougal, Rim Tinhinen</creatorcontrib><creatorcontrib>Bargaz, Adnane</creatorcontrib><creatorcontrib>Sahel, Charaf</creatorcontrib><creatorcontrib>Amenc, Laurie</creatorcontrib><creatorcontrib>Djekoun, Abdelhamid</creatorcontrib><creatorcontrib>Plassard, Claude</creatorcontrib><creatorcontrib>Drevon, Jean-Jacques</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maougal, Rim Tinhinen</au><au>Bargaz, Adnane</au><au>Sahel, Charaf</au><au>Amenc, Laurie</au><au>Djekoun, Abdelhamid</au><au>Plassard, Claude</au><au>Drevon, Jean-Jacques</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>239</volume><issue>4</issue><spage>901</spage><epage>908</epage><pages>901-908</pages><issn>0032-0935</issn><issn>1432-2048</issn><eissn>1432-2048</eissn><abstract>Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C₆H₁₈O₂₄P₆) or 75 μmol Pi (K₂HPO₄), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24407511</pmid><doi>10.1007/s00425-013-2023-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5844-438X</orcidid><orcidid>https://orcid.org/0009-0002-3913-5423</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2014-04, Vol.239 (4), p.901-908 |
issn | 0032-0935 1432-2048 1432-2048 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_51223 |
source | JSTOR Archival Journals and Primary Sources Collection; Springer Link |
subjects | 6-Phytase - genetics 6-Phytase - metabolism Acid soils Agricultural sciences Agricultural soils Agriculture Bacillus subtilis Bacillus subtilis - enzymology Bacillus subtilis - genetics Bacteria Biomedical and Life Sciences cortex Ecology endophytes excretion Forestry genes inbred lines Legumes Life Sciences Nitrogen Fixation Nodulation Nodules Organic phosphorus Original Article Phaseolus - cytology Phaseolus - growth & development Phaseolus - microbiology Phaseolus vulgaris Phosphorus Phosphorus - metabolism phytases phytic acid Phytic Acid - metabolism Plant Biotechnology Plant growth Plant Root Nodulation Plant roots Plant Roots - cytology Plant Roots - growth & development Plant Roots - microbiology Plant Sciences Plant Shoots - cytology Plant Shoots - growth & development Plant Shoots - microbiology Plants reverse transcriptase polymerase chain reaction Rhizobium tropici Rhizosphere RNA, Bacterial - genetics RNA, Bacterial - metabolism root tips Symbiosis Vegetal Biology Växtbioteknologi |
title | Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20of%20the%20Bacillus%20subtilis%20beta-propeller%20phytase%20transcripts%20in%20nodulated%20roots%20of%20Phaseolus%20vulgaris%20supplied%20with%20phytate&rft.jtitle=Planta&rft.au=Maougal,%20Rim%20Tinhinen&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2014-04-01&rft.volume=239&rft.issue=4&rft.spage=901&rft.epage=908&rft.pages=901-908&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-013-2023-9&rft_dat=%3Cjstor_swepu%3E43564260%3C/jstor_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1507644539&rft_id=info:pmid/24407511&rft_jstor_id=43564260&rfr_iscdi=true |