Loading…

Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate

Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2014-04, Vol.239 (4), p.901-908
Main Authors: Maougal, Rim Tinhinen, Bargaz, Adnane, Sahel, Charaf, Amenc, Laurie, Djekoun, Abdelhamid, Plassard, Claude, Drevon, Jean-Jacques
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3
cites cdi_FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3
container_end_page 908
container_issue 4
container_start_page 901
container_title Planta
container_volume 239
creator Maougal, Rim Tinhinen
Bargaz, Adnane
Sahel, Charaf
Amenc, Laurie
Djekoun, Abdelhamid
Plassard, Claude
Drevon, Jean-Jacques
description Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C₆H₁₈O₂₄P₆) or 75 μmol Pi (K₂HPO₄), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.
doi_str_mv 10.1007/s00425-013-2023-9
format article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_51223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43564260</jstor_id><sourcerecordid>43564260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEoqXwAByASFzgEBj_TXJsK6BIK4EEPVuO19n1yhsH22lVXoDXZqIsK-CAONme-c0349FXFE8JvCEA9dsEwKmogLCKAmVVe684JZxRfPHmfnEKgHdomTgpHqW0A8BkXT8sTijnUAtCTosfq2C0d991dmEoQ1_mrS0vtHHeT6lMU5edd6nsbNbVGMNovbexHLd3WSdb5qiHZKIbcyrdUA5hPXmd7bqMIWAI5T5vkQuz1s3kNzq6WXQcvUPo1uXtIpXt4-JBr32yTw7nWXH9_t3Xy6tq9enDx8vzVWUEZbniHeuM4UQ0zDBObK9bQwUQIBaatQbRt42sQZpOa1330MmWtbxvpWwlgd6ws6JadNOtHadOjdHtdbxTQTuV_NTpOB8qWSUIpQz51wu_1f4P-Op8peYYECob3ogbguyrhcVFfZtsymrvksGN6cGGKSlS11LyBsh_oAIaTlndSkRf_oXuwhQHXNJM1ZJzwVqkyEKZGFKKtj8OS0DNZlGLWXBepmazqLnm-UF56vZ2faz45Q4E6GFZmBo2Nv7W-h-qz5aiXcohHkU5E5JTCZh_seR7HZTeoCPU9ReK1gTAP0ts-xOr8t3M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507644539</pqid></control><display><type>article</type><title>Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Link</source><creator>Maougal, Rim Tinhinen ; Bargaz, Adnane ; Sahel, Charaf ; Amenc, Laurie ; Djekoun, Abdelhamid ; Plassard, Claude ; Drevon, Jean-Jacques</creator><creatorcontrib>Maougal, Rim Tinhinen ; Bargaz, Adnane ; Sahel, Charaf ; Amenc, Laurie ; Djekoun, Abdelhamid ; Plassard, Claude ; Drevon, Jean-Jacques ; Sveriges lantbruksuniversitet</creatorcontrib><description>Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C₆H₁₈O₂₄P₆) or 75 μmol Pi (K₂HPO₄), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.</description><identifier>ISSN: 0032-0935</identifier><identifier>ISSN: 1432-2048</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-013-2023-9</identifier><identifier>PMID: 24407511</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>6-Phytase - genetics ; 6-Phytase - metabolism ; Acid soils ; Agricultural sciences ; Agricultural soils ; Agriculture ; Bacillus subtilis ; Bacillus subtilis - enzymology ; Bacillus subtilis - genetics ; Bacteria ; Biomedical and Life Sciences ; cortex ; Ecology ; endophytes ; excretion ; Forestry ; genes ; inbred lines ; Legumes ; Life Sciences ; Nitrogen Fixation ; Nodulation ; Nodules ; Organic phosphorus ; Original Article ; Phaseolus - cytology ; Phaseolus - growth &amp; development ; Phaseolus - microbiology ; Phaseolus vulgaris ; Phosphorus ; Phosphorus - metabolism ; phytases ; phytic acid ; Phytic Acid - metabolism ; Plant Biotechnology ; Plant growth ; Plant Root Nodulation ; Plant roots ; Plant Roots - cytology ; Plant Roots - growth &amp; development ; Plant Roots - microbiology ; Plant Sciences ; Plant Shoots - cytology ; Plant Shoots - growth &amp; development ; Plant Shoots - microbiology ; Plants ; reverse transcriptase polymerase chain reaction ; Rhizobium tropici ; Rhizosphere ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; root tips ; Symbiosis ; Vegetal Biology ; Växtbioteknologi</subject><ispartof>Planta, 2014-04, Vol.239 (4), p.901-908</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3</citedby><cites>FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3</cites><orcidid>0000-0002-5844-438X ; 0009-0002-3913-5423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43564260$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43564260$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24407511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01268485$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/51223$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Maougal, Rim Tinhinen</creatorcontrib><creatorcontrib>Bargaz, Adnane</creatorcontrib><creatorcontrib>Sahel, Charaf</creatorcontrib><creatorcontrib>Amenc, Laurie</creatorcontrib><creatorcontrib>Djekoun, Abdelhamid</creatorcontrib><creatorcontrib>Plassard, Claude</creatorcontrib><creatorcontrib>Drevon, Jean-Jacques</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C₆H₁₈O₂₄P₆) or 75 μmol Pi (K₂HPO₄), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.</description><subject>6-Phytase - genetics</subject><subject>6-Phytase - metabolism</subject><subject>Acid soils</subject><subject>Agricultural sciences</subject><subject>Agricultural soils</subject><subject>Agriculture</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - enzymology</subject><subject>Bacillus subtilis - genetics</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>cortex</subject><subject>Ecology</subject><subject>endophytes</subject><subject>excretion</subject><subject>Forestry</subject><subject>genes</subject><subject>inbred lines</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Nitrogen Fixation</subject><subject>Nodulation</subject><subject>Nodules</subject><subject>Organic phosphorus</subject><subject>Original Article</subject><subject>Phaseolus - cytology</subject><subject>Phaseolus - growth &amp; development</subject><subject>Phaseolus - microbiology</subject><subject>Phaseolus vulgaris</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>phytases</subject><subject>phytic acid</subject><subject>Phytic Acid - metabolism</subject><subject>Plant Biotechnology</subject><subject>Plant growth</subject><subject>Plant Root Nodulation</subject><subject>Plant roots</subject><subject>Plant Roots - cytology</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plant Roots - microbiology</subject><subject>Plant Sciences</subject><subject>Plant Shoots - cytology</subject><subject>Plant Shoots - growth &amp; development</subject><subject>Plant Shoots - microbiology</subject><subject>Plants</subject><subject>reverse transcriptase polymerase chain reaction</subject><subject>Rhizobium tropici</subject><subject>Rhizosphere</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>root tips</subject><subject>Symbiosis</subject><subject>Vegetal Biology</subject><subject>Växtbioteknologi</subject><issn>0032-0935</issn><issn>1432-2048</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNks9u1DAQxiMEoqXwAByASFzgEBj_TXJsK6BIK4EEPVuO19n1yhsH22lVXoDXZqIsK-CAONme-c0349FXFE8JvCEA9dsEwKmogLCKAmVVe684JZxRfPHmfnEKgHdomTgpHqW0A8BkXT8sTijnUAtCTosfq2C0d991dmEoQ1_mrS0vtHHeT6lMU5edd6nsbNbVGMNovbexHLd3WSdb5qiHZKIbcyrdUA5hPXmd7bqMIWAI5T5vkQuz1s3kNzq6WXQcvUPo1uXtIpXt4-JBr32yTw7nWXH9_t3Xy6tq9enDx8vzVWUEZbniHeuM4UQ0zDBObK9bQwUQIBaatQbRt42sQZpOa1330MmWtbxvpWwlgd6ws6JadNOtHadOjdHtdbxTQTuV_NTpOB8qWSUIpQz51wu_1f4P-Op8peYYECob3ogbguyrhcVFfZtsymrvksGN6cGGKSlS11LyBsh_oAIaTlndSkRf_oXuwhQHXNJM1ZJzwVqkyEKZGFKKtj8OS0DNZlGLWXBepmazqLnm-UF56vZ2faz45Q4E6GFZmBo2Nv7W-h-qz5aiXcohHkU5E5JTCZh_seR7HZTeoCPU9ReK1gTAP0ts-xOr8t3M</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Maougal, Rim Tinhinen</creator><creator>Bargaz, Adnane</creator><creator>Sahel, Charaf</creator><creator>Amenc, Laurie</creator><creator>Djekoun, Abdelhamid</creator><creator>Plassard, Claude</creator><creator>Drevon, Jean-Jacques</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope><scope>1XC</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-5844-438X</orcidid><orcidid>https://orcid.org/0009-0002-3913-5423</orcidid></search><sort><creationdate>20140401</creationdate><title>Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate</title><author>Maougal, Rim Tinhinen ; Bargaz, Adnane ; Sahel, Charaf ; Amenc, Laurie ; Djekoun, Abdelhamid ; Plassard, Claude ; Drevon, Jean-Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>6-Phytase - genetics</topic><topic>6-Phytase - metabolism</topic><topic>Acid soils</topic><topic>Agricultural sciences</topic><topic>Agricultural soils</topic><topic>Agriculture</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - enzymology</topic><topic>Bacillus subtilis - genetics</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>cortex</topic><topic>Ecology</topic><topic>endophytes</topic><topic>excretion</topic><topic>Forestry</topic><topic>genes</topic><topic>inbred lines</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Nitrogen Fixation</topic><topic>Nodulation</topic><topic>Nodules</topic><topic>Organic phosphorus</topic><topic>Original Article</topic><topic>Phaseolus - cytology</topic><topic>Phaseolus - growth &amp; development</topic><topic>Phaseolus - microbiology</topic><topic>Phaseolus vulgaris</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>phytases</topic><topic>phytic acid</topic><topic>Phytic Acid - metabolism</topic><topic>Plant Biotechnology</topic><topic>Plant growth</topic><topic>Plant Root Nodulation</topic><topic>Plant roots</topic><topic>Plant Roots - cytology</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plant Roots - microbiology</topic><topic>Plant Sciences</topic><topic>Plant Shoots - cytology</topic><topic>Plant Shoots - growth &amp; development</topic><topic>Plant Shoots - microbiology</topic><topic>Plants</topic><topic>reverse transcriptase polymerase chain reaction</topic><topic>Rhizobium tropici</topic><topic>Rhizosphere</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>root tips</topic><topic>Symbiosis</topic><topic>Vegetal Biology</topic><topic>Växtbioteknologi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maougal, Rim Tinhinen</creatorcontrib><creatorcontrib>Bargaz, Adnane</creatorcontrib><creatorcontrib>Sahel, Charaf</creatorcontrib><creatorcontrib>Amenc, Laurie</creatorcontrib><creatorcontrib>Djekoun, Abdelhamid</creatorcontrib><creatorcontrib>Plassard, Claude</creatorcontrib><creatorcontrib>Drevon, Jean-Jacques</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maougal, Rim Tinhinen</au><au>Bargaz, Adnane</au><au>Sahel, Charaf</au><au>Amenc, Laurie</au><au>Djekoun, Abdelhamid</au><au>Plassard, Claude</au><au>Drevon, Jean-Jacques</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>239</volume><issue>4</issue><spage>901</spage><epage>908</epage><pages>901-908</pages><issn>0032-0935</issn><issn>1432-2048</issn><eissn>1432-2048</eissn><abstract>Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C₆H₁₈O₂₄P₆) or 75 μmol Pi (K₂HPO₄), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24407511</pmid><doi>10.1007/s00425-013-2023-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5844-438X</orcidid><orcidid>https://orcid.org/0009-0002-3913-5423</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2014-04, Vol.239 (4), p.901-908
issn 0032-0935
1432-2048
1432-2048
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_51223
source JSTOR Archival Journals and Primary Sources Collection; Springer Link
subjects 6-Phytase - genetics
6-Phytase - metabolism
Acid soils
Agricultural sciences
Agricultural soils
Agriculture
Bacillus subtilis
Bacillus subtilis - enzymology
Bacillus subtilis - genetics
Bacteria
Biomedical and Life Sciences
cortex
Ecology
endophytes
excretion
Forestry
genes
inbred lines
Legumes
Life Sciences
Nitrogen Fixation
Nodulation
Nodules
Organic phosphorus
Original Article
Phaseolus - cytology
Phaseolus - growth & development
Phaseolus - microbiology
Phaseolus vulgaris
Phosphorus
Phosphorus - metabolism
phytases
phytic acid
Phytic Acid - metabolism
Plant Biotechnology
Plant growth
Plant Root Nodulation
Plant roots
Plant Roots - cytology
Plant Roots - growth & development
Plant Roots - microbiology
Plant Sciences
Plant Shoots - cytology
Plant Shoots - growth & development
Plant Shoots - microbiology
Plants
reverse transcriptase polymerase chain reaction
Rhizobium tropici
Rhizosphere
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
root tips
Symbiosis
Vegetal Biology
Växtbioteknologi
title Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20of%20the%20Bacillus%20subtilis%20beta-propeller%20phytase%20transcripts%20in%20nodulated%20roots%20of%20Phaseolus%20vulgaris%20supplied%20with%20phytate&rft.jtitle=Planta&rft.au=Maougal,%20Rim%20Tinhinen&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2014-04-01&rft.volume=239&rft.issue=4&rft.spage=901&rft.epage=908&rft.pages=901-908&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-013-2023-9&rft_dat=%3Cjstor_swepu%3E43564260%3C/jstor_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-4b3bcc41583c341efa9c250101e08da05f986706cbaaa7f0b69394f9669610fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1507644539&rft_id=info:pmid/24407511&rft_jstor_id=43564260&rfr_iscdi=true