Loading…

Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium

Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2013-05, Vol.288 (18), p.12828-12839
Main Authors: Wu, Miao, Beckham, Gregg T., Larsson, Anna M., Ishida, Takuya, Kim, Seonah, Payne, Christina M., Himmel, Michael E., Crowley, Michael F., Horn, Svein J., Westereng, Bjørge, Igarashi, Kiyohiko, Samejima, Masahiro, Ståhlberg, Jerry, Eijsink, Vincent G.H., Sandgren, Mats
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c574t-f791debfc1b177fe1b1c6bcfefbe5d13b260c08649691b86fd1f06042939c0cb3
cites cdi_FETCH-LOGICAL-c574t-f791debfc1b177fe1b1c6bcfefbe5d13b260c08649691b86fd1f06042939c0cb3
container_end_page 12839
container_issue 18
container_start_page 12828
container_title The Journal of biological chemistry
container_volume 288
creator Wu, Miao
Beckham, Gregg T.
Larsson, Anna M.
Ishida, Takuya
Kim, Seonah
Payne, Christina M.
Himmel, Michael E.
Crowley, Michael F.
Horn, Svein J.
Westereng, Bjørge
Igarashi, Kiyohiko
Samejima, Masahiro
Ståhlberg, Jerry
Eijsink, Vincent G.H.
Sandgren, Mats
description Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain. Background: Lytic polysaccharide monooxygenases (LPMOs) represent a recently discovered enzymatic route to cleave carbohydrates. Results: We report the first basidiomycete LPMO structure and describe enzyme-cellulose interactions with simulation. Conclusion: We characterize the copper-containing active site and identify loops important for substrate recognition and binding. Significance: This structure is the first LPMO from a model basidiomycete fungus that contains many LPMO genes.
doi_str_mv 10.1074/jbc.M113.459396
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_53156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819333447</els_id><sourcerecordid>1349093834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-f791debfc1b177fe1b1c6bcfefbe5d13b260c08649691b86fd1f06042939c0cb3</originalsourceid><addsrcrecordid>eNp1kk9v1DAQxSMEotvCmRvykUu2dpx_viBBoC3SVlQCJG6WMxnvukrixXYK6Yfhs-JtSkUP-DKS5_ee7fFLkleMrhmt8tPrFtaXjPF1XgguyifJitGap7xg358mK0ozloqsqI-SY--vaVy5YM-To4wXWRFlq-R342YfVE--BDdBmBwSNXakscN-CioYO8Zes1NOQUBnbu-2iNUk7JBs5mCAXNl-9gogQqZDcmlHa3_NWxyVR3J-UbIPRDs73CneK286Y4cZbFDkbBq3kydXOzWis9EAAxLYxRtZv7fOTMOL5JlWvceX9_Uk-Xb28WtzkW4-n39q3m1SKKo8pLoSrMNWA2tZVWmMBcoWNOoWi47xNisp0LrMRSlYW5e6Y5qWNM_i0IBCy0-SdPH1P3E_tXLvzKDcLK0y0vdTq9yhSI-y4KwoI_924SM8YAc4Bqf6R7LHndHs5NbeSF7mGc-qaPDm3sDZHxP6IAfjAfs-jsJOXjKeCyp4zfOIni4oOOu9Q_1wDKPykAIZUyAPKZBLCqLi9b-3e-D_fnsExAJgnOmNwfg6MDgCdsYhBNlZ81_zPw-FyEc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349093834</pqid></control><display><type>article</type><title>Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium</title><source>NCBI_PubMed Central(免费)</source><source>ScienceDirect Journals</source><creator>Wu, Miao ; Beckham, Gregg T. ; Larsson, Anna M. ; Ishida, Takuya ; Kim, Seonah ; Payne, Christina M. ; Himmel, Michael E. ; Crowley, Michael F. ; Horn, Svein J. ; Westereng, Bjørge ; Igarashi, Kiyohiko ; Samejima, Masahiro ; Ståhlberg, Jerry ; Eijsink, Vincent G.H. ; Sandgren, Mats</creator><creatorcontrib>Wu, Miao ; Beckham, Gregg T. ; Larsson, Anna M. ; Ishida, Takuya ; Kim, Seonah ; Payne, Christina M. ; Himmel, Michael E. ; Crowley, Michael F. ; Horn, Svein J. ; Westereng, Bjørge ; Igarashi, Kiyohiko ; Samejima, Masahiro ; Ståhlberg, Jerry ; Eijsink, Vincent G.H. ; Sandgren, Mats ; Sveriges lantbruksuniversitet</creatorcontrib><description>Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain. Background: Lytic polysaccharide monooxygenases (LPMOs) represent a recently discovered enzymatic route to cleave carbohydrates. Results: We report the first basidiomycete LPMO structure and describe enzyme-cellulose interactions with simulation. Conclusion: We characterize the copper-containing active site and identify loops important for substrate recognition and binding. Significance: This structure is the first LPMO from a model basidiomycete fungus that contains many LPMO genes.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.459396</identifier><identifier>PMID: 23525113</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biochemistry and Molecular Biology ; Biofuel ; Biokemi och molekylärbiologi ; Carbohydrate-binding Protein ; Catalytic Domain ; CBM33 ; Cellobiose - chemistry ; Cellobiose - metabolism ; Copper - chemistry ; Copper - metabolism ; Copper Monooxygenase ; Crystallography, X-Ray ; Enzymology ; Fungal Proteins - chemistry ; Fungal Proteins - metabolism ; Förnyelsebar bioenergi ; GH61 ; Glycoside Hydrolases ; Lytic Polysaccharide Monooxygenase ; Mixed Function Oxygenases - chemistry ; Mixed Function Oxygenases - metabolism ; Molecular Dynamics ; Phanerochaete - enzymology ; Phanerochaete chrysosporium ; Renewable Bioenergy Research ; Structural Biology ; Strukturbiologi</subject><ispartof>The Journal of biological chemistry, 2013-05, Vol.288 (18), p.12828-12839</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-f791debfc1b177fe1b1c6bcfefbe5d13b260c08649691b86fd1f06042939c0cb3</citedby><cites>FETCH-LOGICAL-c574t-f791debfc1b177fe1b1c6bcfefbe5d13b260c08649691b86fd1f06042939c0cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642327/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819333447$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3547,27922,27923,45778,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23525113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/53156$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Miao</creatorcontrib><creatorcontrib>Beckham, Gregg T.</creatorcontrib><creatorcontrib>Larsson, Anna M.</creatorcontrib><creatorcontrib>Ishida, Takuya</creatorcontrib><creatorcontrib>Kim, Seonah</creatorcontrib><creatorcontrib>Payne, Christina M.</creatorcontrib><creatorcontrib>Himmel, Michael E.</creatorcontrib><creatorcontrib>Crowley, Michael F.</creatorcontrib><creatorcontrib>Horn, Svein J.</creatorcontrib><creatorcontrib>Westereng, Bjørge</creatorcontrib><creatorcontrib>Igarashi, Kiyohiko</creatorcontrib><creatorcontrib>Samejima, Masahiro</creatorcontrib><creatorcontrib>Ståhlberg, Jerry</creatorcontrib><creatorcontrib>Eijsink, Vincent G.H.</creatorcontrib><creatorcontrib>Sandgren, Mats</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain. Background: Lytic polysaccharide monooxygenases (LPMOs) represent a recently discovered enzymatic route to cleave carbohydrates. Results: We report the first basidiomycete LPMO structure and describe enzyme-cellulose interactions with simulation. Conclusion: We characterize the copper-containing active site and identify loops important for substrate recognition and binding. Significance: This structure is the first LPMO from a model basidiomycete fungus that contains many LPMO genes.</description><subject>Biochemistry and Molecular Biology</subject><subject>Biofuel</subject><subject>Biokemi och molekylärbiologi</subject><subject>Carbohydrate-binding Protein</subject><subject>Catalytic Domain</subject><subject>CBM33</subject><subject>Cellobiose - chemistry</subject><subject>Cellobiose - metabolism</subject><subject>Copper - chemistry</subject><subject>Copper - metabolism</subject><subject>Copper Monooxygenase</subject><subject>Crystallography, X-Ray</subject><subject>Enzymology</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - metabolism</subject><subject>Förnyelsebar bioenergi</subject><subject>GH61</subject><subject>Glycoside Hydrolases</subject><subject>Lytic Polysaccharide Monooxygenase</subject><subject>Mixed Function Oxygenases - chemistry</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>Molecular Dynamics</subject><subject>Phanerochaete - enzymology</subject><subject>Phanerochaete chrysosporium</subject><subject>Renewable Bioenergy Research</subject><subject>Structural Biology</subject><subject>Strukturbiologi</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kk9v1DAQxSMEotvCmRvykUu2dpx_viBBoC3SVlQCJG6WMxnvukrixXYK6Yfhs-JtSkUP-DKS5_ee7fFLkleMrhmt8tPrFtaXjPF1XgguyifJitGap7xg358mK0ozloqsqI-SY--vaVy5YM-To4wXWRFlq-R342YfVE--BDdBmBwSNXakscN-CioYO8Zes1NOQUBnbu-2iNUk7JBs5mCAXNl-9gogQqZDcmlHa3_NWxyVR3J-UbIPRDs73CneK286Y4cZbFDkbBq3kydXOzWis9EAAxLYxRtZv7fOTMOL5JlWvceX9_Uk-Xb28WtzkW4-n39q3m1SKKo8pLoSrMNWA2tZVWmMBcoWNOoWi47xNisp0LrMRSlYW5e6Y5qWNM_i0IBCy0-SdPH1P3E_tXLvzKDcLK0y0vdTq9yhSI-y4KwoI_924SM8YAc4Bqf6R7LHndHs5NbeSF7mGc-qaPDm3sDZHxP6IAfjAfs-jsJOXjKeCyp4zfOIni4oOOu9Q_1wDKPykAIZUyAPKZBLCqLi9b-3e-D_fnsExAJgnOmNwfg6MDgCdsYhBNlZ81_zPw-FyEc</recordid><startdate>20130503</startdate><enddate>20130503</enddate><creator>Wu, Miao</creator><creator>Beckham, Gregg T.</creator><creator>Larsson, Anna M.</creator><creator>Ishida, Takuya</creator><creator>Kim, Seonah</creator><creator>Payne, Christina M.</creator><creator>Himmel, Michael E.</creator><creator>Crowley, Michael F.</creator><creator>Horn, Svein J.</creator><creator>Westereng, Bjørge</creator><creator>Igarashi, Kiyohiko</creator><creator>Samejima, Masahiro</creator><creator>Ståhlberg, Jerry</creator><creator>Eijsink, Vincent G.H.</creator><creator>Sandgren, Mats</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>20130503</creationdate><title>Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium</title><author>Wu, Miao ; Beckham, Gregg T. ; Larsson, Anna M. ; Ishida, Takuya ; Kim, Seonah ; Payne, Christina M. ; Himmel, Michael E. ; Crowley, Michael F. ; Horn, Svein J. ; Westereng, Bjørge ; Igarashi, Kiyohiko ; Samejima, Masahiro ; Ståhlberg, Jerry ; Eijsink, Vincent G.H. ; Sandgren, Mats</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-f791debfc1b177fe1b1c6bcfefbe5d13b260c08649691b86fd1f06042939c0cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biochemistry and Molecular Biology</topic><topic>Biofuel</topic><topic>Biokemi och molekylärbiologi</topic><topic>Carbohydrate-binding Protein</topic><topic>Catalytic Domain</topic><topic>CBM33</topic><topic>Cellobiose - chemistry</topic><topic>Cellobiose - metabolism</topic><topic>Copper - chemistry</topic><topic>Copper - metabolism</topic><topic>Copper Monooxygenase</topic><topic>Crystallography, X-Ray</topic><topic>Enzymology</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - metabolism</topic><topic>Förnyelsebar bioenergi</topic><topic>GH61</topic><topic>Glycoside Hydrolases</topic><topic>Lytic Polysaccharide Monooxygenase</topic><topic>Mixed Function Oxygenases - chemistry</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>Molecular Dynamics</topic><topic>Phanerochaete - enzymology</topic><topic>Phanerochaete chrysosporium</topic><topic>Renewable Bioenergy Research</topic><topic>Structural Biology</topic><topic>Strukturbiologi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Miao</creatorcontrib><creatorcontrib>Beckham, Gregg T.</creatorcontrib><creatorcontrib>Larsson, Anna M.</creatorcontrib><creatorcontrib>Ishida, Takuya</creatorcontrib><creatorcontrib>Kim, Seonah</creatorcontrib><creatorcontrib>Payne, Christina M.</creatorcontrib><creatorcontrib>Himmel, Michael E.</creatorcontrib><creatorcontrib>Crowley, Michael F.</creatorcontrib><creatorcontrib>Horn, Svein J.</creatorcontrib><creatorcontrib>Westereng, Bjørge</creatorcontrib><creatorcontrib>Igarashi, Kiyohiko</creatorcontrib><creatorcontrib>Samejima, Masahiro</creatorcontrib><creatorcontrib>Ståhlberg, Jerry</creatorcontrib><creatorcontrib>Eijsink, Vincent G.H.</creatorcontrib><creatorcontrib>Sandgren, Mats</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Miao</au><au>Beckham, Gregg T.</au><au>Larsson, Anna M.</au><au>Ishida, Takuya</au><au>Kim, Seonah</au><au>Payne, Christina M.</au><au>Himmel, Michael E.</au><au>Crowley, Michael F.</au><au>Horn, Svein J.</au><au>Westereng, Bjørge</au><au>Igarashi, Kiyohiko</au><au>Samejima, Masahiro</au><au>Ståhlberg, Jerry</au><au>Eijsink, Vincent G.H.</au><au>Sandgren, Mats</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-05-03</date><risdate>2013</risdate><volume>288</volume><issue>18</issue><spage>12828</spage><epage>12839</epage><pages>12828-12839</pages><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Carbohydrate structures are modified and degraded in the biosphere by a myriad of mostly hydrolytic enzymes. Recently, lytic polysaccharide mono-oxygenases (LPMOs) were discovered as a new class of enzymes for cleavage of recalcitrant polysaccharides that instead employ an oxidative mechanism. LPMOs employ copper as the catalytic metal and are dependent on oxygen and reducing agents for activity. LPMOs are found in many fungi and bacteria, but to date no basidiomycete LPMO has been structurally characterized. Here we present the three-dimensional crystal structure of the basidiomycete Phanerochaete chrysosporium GH61D LPMO, and, for the first time, measure the product distribution of LPMO action on a lignocellulosic substrate. The structure reveals a copper-bound active site common to LPMOs, a collection of aromatic and polar residues near the binding surface that may be responsible for regio-selectivity, and substantial differences in loop structures near the binding face compared with other LPMO structures. The activity assays indicate that this LPMO primarily produces aldonic acids. Last, molecular simulations reveal conformational changes, including the binding of several regions to the cellulose surface, leading to alignment of three tyrosine residues on the binding face of the enzyme with individual cellulose chains, similar to what has been observed for family 1 carbohydrate-binding modules. A calculated potential energy surface for surface translation indicates that P. chrysosporium GH61D exhibits energy wells whose spacing seems adapted to the spacing of cellobiose units along a cellulose chain. Background: Lytic polysaccharide monooxygenases (LPMOs) represent a recently discovered enzymatic route to cleave carbohydrates. Results: We report the first basidiomycete LPMO structure and describe enzyme-cellulose interactions with simulation. Conclusion: We characterize the copper-containing active site and identify loops important for substrate recognition and binding. Significance: This structure is the first LPMO from a model basidiomycete fungus that contains many LPMO genes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23525113</pmid><doi>10.1074/jbc.M113.459396</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-05, Vol.288 (18), p.12828-12839
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_53156
source NCBI_PubMed Central(免费); ScienceDirect Journals
subjects Biochemistry and Molecular Biology
Biofuel
Biokemi och molekylärbiologi
Carbohydrate-binding Protein
Catalytic Domain
CBM33
Cellobiose - chemistry
Cellobiose - metabolism
Copper - chemistry
Copper - metabolism
Copper Monooxygenase
Crystallography, X-Ray
Enzymology
Fungal Proteins - chemistry
Fungal Proteins - metabolism
Förnyelsebar bioenergi
GH61
Glycoside Hydrolases
Lytic Polysaccharide Monooxygenase
Mixed Function Oxygenases - chemistry
Mixed Function Oxygenases - metabolism
Molecular Dynamics
Phanerochaete - enzymology
Phanerochaete chrysosporium
Renewable Bioenergy Research
Structural Biology
Strukturbiologi
title Crystal Structure and Computational Characterization of the Lytic Polysaccharide Monooxygenase GH61D from the Basidiomycota Fungus Phanerochaete chrysosporium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structure%20and%20Computational%20Characterization%20of%20the%20Lytic%20Polysaccharide%20Monooxygenase%20GH61D%20from%20the%20Basidiomycota%20Fungus%20Phanerochaete%20chrysosporium&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Wu,%20Miao&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2013-05-03&rft.volume=288&rft.issue=18&rft.spage=12828&rft.epage=12839&rft.pages=12828-12839&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.459396&rft_dat=%3Cproquest_swepu%3E1349093834%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c574t-f791debfc1b177fe1b1c6bcfefbe5d13b260c08649691b86fd1f06042939c0cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1349093834&rft_id=info:pmid/23525113&rfr_iscdi=true