Loading…

Influenza A(H7N9) virus acquires resistance-related neuraminidase I222T substitution when infected mallards are exposed to low levels of oseltamivir in water

Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and new human IAVs often contain gene segments originating from avian IAVs. Treatment options for severe human influenza are principally restricted to neuraminidase inhibitors (NAIs), among which oseltamivir is stockpiled in prepar...

Full description

Saved in:
Bibliographic Details
Published in:Antimicrobial agents and chemotherapy 2015-09, Vol.59 (9), p.5196-5202
Main Authors: Gillman, Anna, Nykvist, Marie, Muradrasoli, Shaman, Söderström, Hanna, Wille, Michelle, Daggfeldt, Annika, Bröjer, Caroline, Waldenström, Jonas, Olsen, Björn, Järhult, Josef D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a568t-19c731489f51d0ff35aa6d27d51ff2364a34f561db63fa99655a9ec464b84d33
cites cdi_FETCH-LOGICAL-a568t-19c731489f51d0ff35aa6d27d51ff2364a34f561db63fa99655a9ec464b84d33
container_end_page 5202
container_issue 9
container_start_page 5196
container_title Antimicrobial agents and chemotherapy
container_volume 59
creator Gillman, Anna
Nykvist, Marie
Muradrasoli, Shaman
Söderström, Hanna
Wille, Michelle
Daggfeldt, Annika
Bröjer, Caroline
Waldenström, Jonas
Olsen, Björn
Järhult, Josef D
description Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and new human IAVs often contain gene segments originating from avian IAVs. Treatment options for severe human influenza are principally restricted to neuraminidase inhibitors (NAIs), among which oseltamivir is stockpiled in preparedness for influenza pandemics. There is evolutionary pressure in the environment for resistance development to oseltamivir in avian IAVs, as the active metabolite oseltamivir carboxylate (OC) passes largely undegraded through sewage treatment to river water where waterfowl reside. In an in vivo mallard (Anas platyrhynchos) model, we tested if low-pathogenic avian influenza A(H7N9) virus might become resistant if the host was exposed to low levels of OC. Ducks were experimentally infected, and OC was added to their water, after which infection and transmission were maintained by successive introductions of uninfected birds. Daily fecal samples were tested for IAV excretion, genotype, and phenotype. Following mallard exposure to 2.5 μg/liter OC, the resistance-related neuraminidase (NA) I222T substitution, was detected within 2 days during the first passage and was found in all viruses sequenced from subsequently introduced ducks. The substitution generated 8-fold and 2.4-fold increases in the 50% inhibitory concentration (IC50) for OC (P < 0.001) and zanamivir (P = 0.016), respectively. We conclude that OC exposure of IAV hosts, in the same concentration magnitude as found in the environment, may result in amino acid substitutions, leading to changed antiviral sensitivity in an IAV subtype that can be highly pathogenic to humans. Prudent use of oseltamivir and resistance surveillance of IAVs in wild birds are warranted.
doi_str_mv 10.1128/AAC.00886-15
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_75539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1704346977</sourcerecordid><originalsourceid>FETCH-LOGICAL-a568t-19c731489f51d0ff35aa6d27d51ff2364a34f561db63fa99655a9ec464b84d33</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhlcIREvhxhn52EpssddfuxekKHw0UgWXiKvl7I5bV147tddJ4b_wX3FIaemhiIM18vjxOx7PW1WvCT4lpGnfzWbzU4zbVtSEP6kOCe7aWvBOPK0OMRaiZi1mB9WLlK5w2fMOP68OGoGlbLg8rH4uvHEZ_A-NZsdn8kt3gjY25oR0f51thITKsmnSvoc6gtMTDMhDjnq03g46AVo0TbNEKa_SZKc82eDR9hI8st5Av8NH7ZyOQ9GMgOBmHVJJTgG5sEUONuASCgaVrJuKailfrqJtqRRfVs-Mdgle3cajavnp43J-Vp9__byYz85rzUU71aTrJSWs7QwnAzaGcq3F0MiBE2MaKpimzHBBhpWgRned4Fx30DPBVi0bKD2q6r1s2sI6r9Q62lHH7ypoq5LLKx13QSVQknPaFf7to_wH-22mQrxQOatGcCyaf8rf42NWZXali_-Tdz4rJiURBX-_xws7wtCDn6J2D249PPH2Ul2EjWKctuVXisDxrUAM1xnSpEabeihD8xByUkRiRpnopLx_Wh9DShHMXRmC1c6OqthR_bajIrzgJ3tcp7FRVyFHX8b4GPvm7zbuhP94lf4CLX3sPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1704346977</pqid></control><display><type>article</type><title>Influenza A(H7N9) virus acquires resistance-related neuraminidase I222T substitution when infected mallards are exposed to low levels of oseltamivir in water</title><source>American Society for Microbiology Journals</source><source>PubMed Central</source><creator>Gillman, Anna ; Nykvist, Marie ; Muradrasoli, Shaman ; Söderström, Hanna ; Wille, Michelle ; Daggfeldt, Annika ; Bröjer, Caroline ; Waldenström, Jonas ; Olsen, Björn ; Järhult, Josef D</creator><creatorcontrib>Gillman, Anna ; Nykvist, Marie ; Muradrasoli, Shaman ; Söderström, Hanna ; Wille, Michelle ; Daggfeldt, Annika ; Bröjer, Caroline ; Waldenström, Jonas ; Olsen, Björn ; Järhult, Josef D ; Sveriges lantbruksuniversitet</creatorcontrib><description>Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and new human IAVs often contain gene segments originating from avian IAVs. Treatment options for severe human influenza are principally restricted to neuraminidase inhibitors (NAIs), among which oseltamivir is stockpiled in preparedness for influenza pandemics. There is evolutionary pressure in the environment for resistance development to oseltamivir in avian IAVs, as the active metabolite oseltamivir carboxylate (OC) passes largely undegraded through sewage treatment to river water where waterfowl reside. In an in vivo mallard (Anas platyrhynchos) model, we tested if low-pathogenic avian influenza A(H7N9) virus might become resistant if the host was exposed to low levels of OC. Ducks were experimentally infected, and OC was added to their water, after which infection and transmission were maintained by successive introductions of uninfected birds. Daily fecal samples were tested for IAV excretion, genotype, and phenotype. Following mallard exposure to 2.5 μg/liter OC, the resistance-related neuraminidase (NA) I222T substitution, was detected within 2 days during the first passage and was found in all viruses sequenced from subsequently introduced ducks. The substitution generated 8-fold and 2.4-fold increases in the 50% inhibitory concentration (IC50) for OC (P &lt; 0.001) and zanamivir (P = 0.016), respectively. We conclude that OC exposure of IAV hosts, in the same concentration magnitude as found in the environment, may result in amino acid substitutions, leading to changed antiviral sensitivity in an IAV subtype that can be highly pathogenic to humans. Prudent use of oseltamivir and resistance surveillance of IAVs in wild birds are warranted.</description><identifier>ISSN: 0066-4804</identifier><identifier>ISSN: 1098-6596</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AAC.00886-15</identifier><identifier>PMID: 26077257</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Animals ; Antiviral Agents ; Ducks ; Influenza A Virus, H7N9 Subtype ; Influenza A Virus, H7N9 Subtype - drug effects ; Influenza A Virus, H7N9 Subtype - enzymology ; Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy) ; Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci) ; Microbiology in the medical area ; Mikrobiologi inom det medicinska området ; Neuraminidase ; Neuraminidase - genetics ; Neuraminidase - metabolism ; Oseltamivir ; Oseltamivir - analogs &amp; derivatives ; Oseltamivir - pharmacology ; Water ; Water - chemistry ; Zoonotic Ecology ; Zoonotisk ekologi</subject><ispartof>Antimicrobial agents and chemotherapy, 2015-09, Vol.59 (9), p.5196-5202</ispartof><rights>Copyright © 2015, Gillman et al.</rights><rights>Copyright © 2015, Gillman et al. 2015 Gillman et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a568t-19c731489f51d0ff35aa6d27d51ff2364a34f561db63fa99655a9ec464b84d33</citedby><cites>FETCH-LOGICAL-a568t-19c731489f51d0ff35aa6d27d51ff2364a34f561db63fa99655a9ec464b84d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.asm.org/doi/pdf/10.1128/AAC.00886-15$$EPDF$$P50$$Gasm2$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.asm.org/doi/full/10.1128/AAC.00886-15$$EHTML$$P50$$Gasm2$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3174,27903,27904,52729,52730,52731,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26077257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-47716$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-109148$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-265062$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/75539$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gillman, Anna</creatorcontrib><creatorcontrib>Nykvist, Marie</creatorcontrib><creatorcontrib>Muradrasoli, Shaman</creatorcontrib><creatorcontrib>Söderström, Hanna</creatorcontrib><creatorcontrib>Wille, Michelle</creatorcontrib><creatorcontrib>Daggfeldt, Annika</creatorcontrib><creatorcontrib>Bröjer, Caroline</creatorcontrib><creatorcontrib>Waldenström, Jonas</creatorcontrib><creatorcontrib>Olsen, Björn</creatorcontrib><creatorcontrib>Järhult, Josef D</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Influenza A(H7N9) virus acquires resistance-related neuraminidase I222T substitution when infected mallards are exposed to low levels of oseltamivir in water</title><title>Antimicrobial agents and chemotherapy</title><addtitle>Antimicrob Agents Chemother</addtitle><addtitle>Antimicrob Agents Chemother</addtitle><description>Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and new human IAVs often contain gene segments originating from avian IAVs. Treatment options for severe human influenza are principally restricted to neuraminidase inhibitors (NAIs), among which oseltamivir is stockpiled in preparedness for influenza pandemics. There is evolutionary pressure in the environment for resistance development to oseltamivir in avian IAVs, as the active metabolite oseltamivir carboxylate (OC) passes largely undegraded through sewage treatment to river water where waterfowl reside. In an in vivo mallard (Anas platyrhynchos) model, we tested if low-pathogenic avian influenza A(H7N9) virus might become resistant if the host was exposed to low levels of OC. Ducks were experimentally infected, and OC was added to their water, after which infection and transmission were maintained by successive introductions of uninfected birds. Daily fecal samples were tested for IAV excretion, genotype, and phenotype. Following mallard exposure to 2.5 μg/liter OC, the resistance-related neuraminidase (NA) I222T substitution, was detected within 2 days during the first passage and was found in all viruses sequenced from subsequently introduced ducks. The substitution generated 8-fold and 2.4-fold increases in the 50% inhibitory concentration (IC50) for OC (P &lt; 0.001) and zanamivir (P = 0.016), respectively. We conclude that OC exposure of IAV hosts, in the same concentration magnitude as found in the environment, may result in amino acid substitutions, leading to changed antiviral sensitivity in an IAV subtype that can be highly pathogenic to humans. Prudent use of oseltamivir and resistance surveillance of IAVs in wild birds are warranted.</description><subject>Animals</subject><subject>Antiviral Agents</subject><subject>Ducks</subject><subject>Influenza A Virus, H7N9 Subtype</subject><subject>Influenza A Virus, H7N9 Subtype - drug effects</subject><subject>Influenza A Virus, H7N9 Subtype - enzymology</subject><subject>Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)</subject><subject>Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)</subject><subject>Microbiology in the medical area</subject><subject>Mikrobiologi inom det medicinska området</subject><subject>Neuraminidase</subject><subject>Neuraminidase - genetics</subject><subject>Neuraminidase - metabolism</subject><subject>Oseltamivir</subject><subject>Oseltamivir - analogs &amp; derivatives</subject><subject>Oseltamivir - pharmacology</subject><subject>Water</subject><subject>Water - chemistry</subject><subject>Zoonotic Ecology</subject><subject>Zoonotisk ekologi</subject><issn>0066-4804</issn><issn>1098-6596</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkk1vEzEQhlcIREvhxhn52EpssddfuxekKHw0UgWXiKvl7I5bV147tddJ4b_wX3FIaemhiIM18vjxOx7PW1WvCT4lpGnfzWbzU4zbVtSEP6kOCe7aWvBOPK0OMRaiZi1mB9WLlK5w2fMOP68OGoGlbLg8rH4uvHEZ_A-NZsdn8kt3gjY25oR0f51thITKsmnSvoc6gtMTDMhDjnq03g46AVo0TbNEKa_SZKc82eDR9hI8st5Av8NH7ZyOQ9GMgOBmHVJJTgG5sEUONuASCgaVrJuKailfrqJtqRRfVs-Mdgle3cajavnp43J-Vp9__byYz85rzUU71aTrJSWs7QwnAzaGcq3F0MiBE2MaKpimzHBBhpWgRned4Fx30DPBVi0bKD2q6r1s2sI6r9Q62lHH7ypoq5LLKx13QSVQknPaFf7to_wH-22mQrxQOatGcCyaf8rf42NWZXali_-Tdz4rJiURBX-_xws7wtCDn6J2D249PPH2Ul2EjWKctuVXisDxrUAM1xnSpEabeihD8xByUkRiRpnopLx_Wh9DShHMXRmC1c6OqthR_bajIrzgJ3tcp7FRVyFHX8b4GPvm7zbuhP94lf4CLX3sPg</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Gillman, Anna</creator><creator>Nykvist, Marie</creator><creator>Muradrasoli, Shaman</creator><creator>Söderström, Hanna</creator><creator>Wille, Michelle</creator><creator>Daggfeldt, Annika</creator><creator>Bröjer, Caroline</creator><creator>Waldenström, Jonas</creator><creator>Olsen, Björn</creator><creator>Järhult, Josef D</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGRUY</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D92</scope><scope>ZZAVC</scope><scope>ADHXS</scope><scope>D93</scope><scope>ACNBI</scope><scope>DF2</scope></search><sort><creationdate>20150901</creationdate><title>Influenza A(H7N9) virus acquires resistance-related neuraminidase I222T substitution when infected mallards are exposed to low levels of oseltamivir in water</title><author>Gillman, Anna ; Nykvist, Marie ; Muradrasoli, Shaman ; Söderström, Hanna ; Wille, Michelle ; Daggfeldt, Annika ; Bröjer, Caroline ; Waldenström, Jonas ; Olsen, Björn ; Järhult, Josef D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a568t-19c731489f51d0ff35aa6d27d51ff2364a34f561db63fa99655a9ec464b84d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Antiviral Agents</topic><topic>Ducks</topic><topic>Influenza A Virus, H7N9 Subtype</topic><topic>Influenza A Virus, H7N9 Subtype - drug effects</topic><topic>Influenza A Virus, H7N9 Subtype - enzymology</topic><topic>Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)</topic><topic>Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)</topic><topic>Microbiology in the medical area</topic><topic>Mikrobiologi inom det medicinska området</topic><topic>Neuraminidase</topic><topic>Neuraminidase - genetics</topic><topic>Neuraminidase - metabolism</topic><topic>Oseltamivir</topic><topic>Oseltamivir - analogs &amp; derivatives</topic><topic>Oseltamivir - pharmacology</topic><topic>Water</topic><topic>Water - chemistry</topic><topic>Zoonotic Ecology</topic><topic>Zoonotisk ekologi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillman, Anna</creatorcontrib><creatorcontrib>Nykvist, Marie</creatorcontrib><creatorcontrib>Muradrasoli, Shaman</creatorcontrib><creatorcontrib>Söderström, Hanna</creatorcontrib><creatorcontrib>Wille, Michelle</creatorcontrib><creatorcontrib>Daggfeldt, Annika</creatorcontrib><creatorcontrib>Bröjer, Caroline</creatorcontrib><creatorcontrib>Waldenström, Jonas</creatorcontrib><creatorcontrib>Olsen, Björn</creatorcontrib><creatorcontrib>Järhult, Josef D</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Linnéuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linnéuniversitetet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SWEPUB Umeå universitet</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Antimicrobial agents and chemotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillman, Anna</au><au>Nykvist, Marie</au><au>Muradrasoli, Shaman</au><au>Söderström, Hanna</au><au>Wille, Michelle</au><au>Daggfeldt, Annika</au><au>Bröjer, Caroline</au><au>Waldenström, Jonas</au><au>Olsen, Björn</au><au>Järhult, Josef D</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influenza A(H7N9) virus acquires resistance-related neuraminidase I222T substitution when infected mallards are exposed to low levels of oseltamivir in water</atitle><jtitle>Antimicrobial agents and chemotherapy</jtitle><stitle>Antimicrob Agents Chemother</stitle><addtitle>Antimicrob Agents Chemother</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>59</volume><issue>9</issue><spage>5196</spage><epage>5202</epage><pages>5196-5202</pages><issn>0066-4804</issn><issn>1098-6596</issn><eissn>1098-6596</eissn><abstract>Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and new human IAVs often contain gene segments originating from avian IAVs. Treatment options for severe human influenza are principally restricted to neuraminidase inhibitors (NAIs), among which oseltamivir is stockpiled in preparedness for influenza pandemics. There is evolutionary pressure in the environment for resistance development to oseltamivir in avian IAVs, as the active metabolite oseltamivir carboxylate (OC) passes largely undegraded through sewage treatment to river water where waterfowl reside. In an in vivo mallard (Anas platyrhynchos) model, we tested if low-pathogenic avian influenza A(H7N9) virus might become resistant if the host was exposed to low levels of OC. Ducks were experimentally infected, and OC was added to their water, after which infection and transmission were maintained by successive introductions of uninfected birds. Daily fecal samples were tested for IAV excretion, genotype, and phenotype. Following mallard exposure to 2.5 μg/liter OC, the resistance-related neuraminidase (NA) I222T substitution, was detected within 2 days during the first passage and was found in all viruses sequenced from subsequently introduced ducks. The substitution generated 8-fold and 2.4-fold increases in the 50% inhibitory concentration (IC50) for OC (P &lt; 0.001) and zanamivir (P = 0.016), respectively. We conclude that OC exposure of IAV hosts, in the same concentration magnitude as found in the environment, may result in amino acid substitutions, leading to changed antiviral sensitivity in an IAV subtype that can be highly pathogenic to humans. Prudent use of oseltamivir and resistance surveillance of IAVs in wild birds are warranted.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>26077257</pmid><doi>10.1128/AAC.00886-15</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0066-4804
ispartof Antimicrobial agents and chemotherapy, 2015-09, Vol.59 (9), p.5196-5202
issn 0066-4804
1098-6596
1098-6596
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_75539
source American Society for Microbiology Journals; PubMed Central
subjects Animals
Antiviral Agents
Ducks
Influenza A Virus, H7N9 Subtype
Influenza A Virus, H7N9 Subtype - drug effects
Influenza A Virus, H7N9 Subtype - enzymology
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Microbiology in the medical area
Mikrobiologi inom det medicinska området
Neuraminidase
Neuraminidase - genetics
Neuraminidase - metabolism
Oseltamivir
Oseltamivir - analogs & derivatives
Oseltamivir - pharmacology
Water
Water - chemistry
Zoonotic Ecology
Zoonotisk ekologi
title Influenza A(H7N9) virus acquires resistance-related neuraminidase I222T substitution when infected mallards are exposed to low levels of oseltamivir in water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A19%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influenza%20A(H7N9)%20virus%20acquires%20resistance-related%20neuraminidase%20I222T%20substitution%20when%20infected%20mallards%20are%20exposed%20to%20low%20levels%20of%20oseltamivir%20in%20water&rft.jtitle=Antimicrobial%20agents%20and%20chemotherapy&rft.au=Gillman,%20Anna&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2015-09-01&rft.volume=59&rft.issue=9&rft.spage=5196&rft.epage=5202&rft.pages=5196-5202&rft.issn=0066-4804&rft.eissn=1098-6596&rft_id=info:doi/10.1128/AAC.00886-15&rft_dat=%3Cproquest_swepu%3E1704346977%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a568t-19c731489f51d0ff35aa6d27d51ff2364a34f561db63fa99655a9ec464b84d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1704346977&rft_id=info:pmid/26077257&rfr_iscdi=true