Loading…
Competition for marine space: modelling the Baltic Sea fisheries and effort displacement under spatial restrictions
Maritime spatial planning (MSP) and fishery management may generate extra costs for fisheries by constraining fishers activity with conservation areas and new utilizations of the sea. More energy-efficient fisheries are also likely to alter existing fishing patterns, which already vary from fishery...
Saved in:
Published in: | ICES journal of marine science 2015-03, Vol.72 (3), p.824-840 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Maritime spatial planning (MSP) and fishery management may generate extra costs for fisheries by constraining fishers activity with conservation areas and new utilizations of the sea. More energy-efficient fisheries are also likely to alter existing fishing patterns, which already vary from fishery to fishery and from vessel to vessel. The impact assessment of new spatial plans involving fisheries should be based on quantitative bioeconomic analyses that take into account individual vessel decisions, and trade-offs in cross-sector conflicting interests. We use a vessel-oriented decision-support tool (the DISPLACE model) to combine stochastic variations in spatial fishing activities with harvested resource dynamics in scenario projections. The assessment computes economic and stock status indicators by modelling the activity of Danish, Swedish, and German vessels (>12 m) in the international western Baltic Sea commercial fishery, together with the underlying size-based distribution dynamics of the main fishery resources of sprat, herring, and cod. The outcomes of alternative scenarios for spatial effort displacement are exemplified by evaluating the fishers's abilities to adapt to spatial plans under various constraints. Interlinked spatial, technical, and biological dynamics of vessels and stocks in the scenarios result in stable profits, which compensate for the additional costs from effort displacement and release pressure on the fish stocks. The effort is further redirected away from sensitive benthic habitats, enhancing the ecological positive effects. The energy efficiency of some of the vessels, however, is strongly reduced with the new zonation, and some of the vessels suffer decreased profits. The DISPLACE model serves as a spatially explicit bioeconomic benchmark tool for management strategy evaluations for capturing tactical decision-making in reaction to MSP. |
---|---|
ISSN: | 1054-3139 1095-9289 1095-9289 |
DOI: | 10.1093/icesjms/fsu215 |