Loading…

The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution

The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the tes...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological processes 2016-07, Vol.30 (14), p.2438-2450
Main Authors: Ameli, A. A., McDonnell, J. J., Bishop, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423
cites cdi_FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423
container_end_page 2450
container_issue 14
container_start_page 2438
container_title Hydrological processes
container_volume 30
creator Ameli, A. A.
McDonnell, J. J.
Bishop, K.
description The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/hyp.10777
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_81231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825566129</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEEkNhwT-wxAYkQv0Yxw67qsAMqDwWhYqV5SQ3jUvGTv1oOj-Hf4qHKV0gFVb3Lr5zZN9ziuIpwa8IxvRw2E55EULcKxYE13VJsOT3iwWWkpcVluJh8SiEC4zxEku8KH6eDoDgenIWbDR6RB20o7GAjEVBx-R1hA4N287rNJoWtc52qY3mysQtmk0csmCKw2ukkXVXMKINxMF1qHd-Zzs6b-w5MjEg6HtoI3IWzdnTo350M5p0HALStkPRaxtMRNFsAHUmRG-aFI2zj4sHvR4DPLmZB8XXd29Pj9flyefV--Ojk1JzKkSp-67hDe8Yk4xDQ0nV1pxWraRAuVi2ggnOa1qzpcRdnTfQXNQ9I0R0PV5SdlCUe98ww5QaNXmz0X6rnDYqjKnRfjdUACUJZSTzL-_k35hvR8r5c5WSYhjzpcz48z0-eXeZIES1MaGFcdQWXAqKSMp5VZH8wv-jWFaUZuOMPvsLvXDJ23wnRTnhOWSCyb-o7MWIkAzvDvBiT7XeheChv_0SwWpXLpXLpX6XK7OHe3Y2I2zvBtX6-5c_ipvz5mjh-lah_Q9V7bJRZ59Wqvp4tvrA1iu1Yr8APvjhXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803178302</pqid></control><display><type>article</type><title>The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution</title><source>Wiley</source><creator>Ameli, A. A. ; McDonnell, J. J. ; Bishop, K.</creator><creatorcontrib>Ameli, A. A. ; McDonnell, J. J. ; Bishop, K. ; Sveriges lantbruksuniversitet</creatorcontrib><description>The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>ISSN: 1099-1085</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.10777</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Catchment area ; Catchments ; Computational fluid dynamics ; Depth ; Distribution ; Environmental Management ; Exact solutions ; exponential decline in saturated hydraulic conductivity with depth ; Flow paths ; Fluid flow ; Gradients ; Hydraulic conductivity ; Hydraulics ; Hydrology ; Hypotheses ; integrated flow and transport model ; Interpolation ; Mass balance ; Mathematical models ; Miljöledning ; Model testing ; Numerical schemes ; Oceanografi, hydrologi, vattenresurser ; Oceanography, Hydrology, Water Resources ; Residence time ; Robustness (mathematics) ; Saturated-Unsaturated flow ; semi analytical model ; Storm seepage ; Subsoils ; Subsurface flow ; subsurface flow pathline ; subsurface flow pathline; Saturated‐Unsaturated flow ; Transit time ; transit time distribution ; Unsaturated flow ; Vertical distribution ; Water depth ; Water flow</subject><ispartof>Hydrological processes, 2016-07, Vol.30 (14), p.2438-2450</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423</citedby><cites>FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-300548$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/81231$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ameli, A. A.</creatorcontrib><creatorcontrib>McDonnell, J. J.</creatorcontrib><creatorcontrib>Bishop, K.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Catchment area</subject><subject>Catchments</subject><subject>Computational fluid dynamics</subject><subject>Depth</subject><subject>Distribution</subject><subject>Environmental Management</subject><subject>Exact solutions</subject><subject>exponential decline in saturated hydraulic conductivity with depth</subject><subject>Flow paths</subject><subject>Fluid flow</subject><subject>Gradients</subject><subject>Hydraulic conductivity</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>Hypotheses</subject><subject>integrated flow and transport model</subject><subject>Interpolation</subject><subject>Mass balance</subject><subject>Mathematical models</subject><subject>Miljöledning</subject><subject>Model testing</subject><subject>Numerical schemes</subject><subject>Oceanografi, hydrologi, vattenresurser</subject><subject>Oceanography, Hydrology, Water Resources</subject><subject>Residence time</subject><subject>Robustness (mathematics)</subject><subject>Saturated-Unsaturated flow</subject><subject>semi analytical model</subject><subject>Storm seepage</subject><subject>Subsoils</subject><subject>Subsurface flow</subject><subject>subsurface flow pathline</subject><subject>subsurface flow pathline; Saturated‐Unsaturated flow</subject><subject>Transit time</subject><subject>transit time distribution</subject><subject>Unsaturated flow</subject><subject>Vertical distribution</subject><subject>Water depth</subject><subject>Water flow</subject><issn>0885-6087</issn><issn>1099-1085</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkktv1DAUhSMEEkNhwT-wxAYkQv0Yxw67qsAMqDwWhYqV5SQ3jUvGTv1oOj-Hf4qHKV0gFVb3Lr5zZN9ziuIpwa8IxvRw2E55EULcKxYE13VJsOT3iwWWkpcVluJh8SiEC4zxEku8KH6eDoDgenIWbDR6RB20o7GAjEVBx-R1hA4N287rNJoWtc52qY3mysQtmk0csmCKw2ukkXVXMKINxMF1qHd-Zzs6b-w5MjEg6HtoI3IWzdnTo350M5p0HALStkPRaxtMRNFsAHUmRG-aFI2zj4sHvR4DPLmZB8XXd29Pj9flyefV--Ojk1JzKkSp-67hDe8Yk4xDQ0nV1pxWraRAuVi2ggnOa1qzpcRdnTfQXNQ9I0R0PV5SdlCUe98ww5QaNXmz0X6rnDYqjKnRfjdUACUJZSTzL-_k35hvR8r5c5WSYhjzpcz48z0-eXeZIES1MaGFcdQWXAqKSMp5VZH8wv-jWFaUZuOMPvsLvXDJ23wnRTnhOWSCyb-o7MWIkAzvDvBiT7XeheChv_0SwWpXLpXLpX6XK7OHe3Y2I2zvBtX6-5c_ipvz5mjh-lah_Q9V7bJRZ59Wqvp4tvrA1iu1Yr8APvjhXA</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Ameli, A. A.</creator><creator>McDonnell, J. J.</creator><creator>Bishop, K.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20160701</creationdate><title>The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution</title><author>Ameli, A. A. ; McDonnell, J. J. ; Bishop, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Catchment area</topic><topic>Catchments</topic><topic>Computational fluid dynamics</topic><topic>Depth</topic><topic>Distribution</topic><topic>Environmental Management</topic><topic>Exact solutions</topic><topic>exponential decline in saturated hydraulic conductivity with depth</topic><topic>Flow paths</topic><topic>Fluid flow</topic><topic>Gradients</topic><topic>Hydraulic conductivity</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>Hypotheses</topic><topic>integrated flow and transport model</topic><topic>Interpolation</topic><topic>Mass balance</topic><topic>Mathematical models</topic><topic>Miljöledning</topic><topic>Model testing</topic><topic>Numerical schemes</topic><topic>Oceanografi, hydrologi, vattenresurser</topic><topic>Oceanography, Hydrology, Water Resources</topic><topic>Residence time</topic><topic>Robustness (mathematics)</topic><topic>Saturated-Unsaturated flow</topic><topic>semi analytical model</topic><topic>Storm seepage</topic><topic>Subsoils</topic><topic>Subsurface flow</topic><topic>subsurface flow pathline</topic><topic>subsurface flow pathline; Saturated‐Unsaturated flow</topic><topic>Transit time</topic><topic>transit time distribution</topic><topic>Unsaturated flow</topic><topic>Vertical distribution</topic><topic>Water depth</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ameli, A. A.</creatorcontrib><creatorcontrib>McDonnell, J. J.</creatorcontrib><creatorcontrib>Bishop, K.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ameli, A. A.</au><au>McDonnell, J. J.</au><au>Bishop, K.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>30</volume><issue>14</issue><spage>2438</spage><epage>2450</epage><pages>2438-2450</pages><issn>0885-6087</issn><issn>1099-1085</issn><eissn>1099-1085</eissn><abstract>The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/hyp.10777</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2016-07, Vol.30 (14), p.2438-2450
issn 0885-6087
1099-1085
1099-1085
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_81231
source Wiley
subjects Catchment area
Catchments
Computational fluid dynamics
Depth
Distribution
Environmental Management
Exact solutions
exponential decline in saturated hydraulic conductivity with depth
Flow paths
Fluid flow
Gradients
Hydraulic conductivity
Hydraulics
Hydrology
Hypotheses
integrated flow and transport model
Interpolation
Mass balance
Mathematical models
Miljöledning
Model testing
Numerical schemes
Oceanografi, hydrologi, vattenresurser
Oceanography, Hydrology, Water Resources
Residence time
Robustness (mathematics)
Saturated-Unsaturated flow
semi analytical model
Storm seepage
Subsoils
Subsurface flow
subsurface flow pathline
subsurface flow pathline
Saturated‐Unsaturated flow
Transit time
transit time distribution
Unsaturated flow
Vertical distribution
Water depth
Water flow
title The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20exponential%20decline%20in%20saturated%20hydraulic%20conductivity%20with%20depth:%20a%20novel%20method%20for%20exploring%20its%20effect%20on%20water%20flow%20paths%20and%20transit%20time%20distribution&rft.jtitle=Hydrological%20processes&rft.au=Ameli,%20A.%20A.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2016-07-01&rft.volume=30&rft.issue=14&rft.spage=2438&rft.epage=2450&rft.pages=2438-2450&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.10777&rft_dat=%3Cproquest_swepu%3E1825566129%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1803178302&rft_id=info:pmid/&rfr_iscdi=true