Loading…
The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution
The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the tes...
Saved in:
Published in: | Hydrological processes 2016-07, Vol.30 (14), p.2438-2450 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423 |
---|---|
cites | cdi_FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423 |
container_end_page | 2450 |
container_issue | 14 |
container_start_page | 2438 |
container_title | Hydrological processes |
container_volume | 30 |
creator | Ameli, A. A. McDonnell, J. J. Bishop, K. |
description | The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/hyp.10777 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_81231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825566129</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEEkNhwT-wxAYkQv0Yxw67qsAMqDwWhYqV5SQ3jUvGTv1oOj-Hf4qHKV0gFVb3Lr5zZN9ziuIpwa8IxvRw2E55EULcKxYE13VJsOT3iwWWkpcVluJh8SiEC4zxEku8KH6eDoDgenIWbDR6RB20o7GAjEVBx-R1hA4N287rNJoWtc52qY3mysQtmk0csmCKw2ukkXVXMKINxMF1qHd-Zzs6b-w5MjEg6HtoI3IWzdnTo350M5p0HALStkPRaxtMRNFsAHUmRG-aFI2zj4sHvR4DPLmZB8XXd29Pj9flyefV--Ojk1JzKkSp-67hDe8Yk4xDQ0nV1pxWraRAuVi2ggnOa1qzpcRdnTfQXNQ9I0R0PV5SdlCUe98ww5QaNXmz0X6rnDYqjKnRfjdUACUJZSTzL-_k35hvR8r5c5WSYhjzpcz48z0-eXeZIES1MaGFcdQWXAqKSMp5VZH8wv-jWFaUZuOMPvsLvXDJ23wnRTnhOWSCyb-o7MWIkAzvDvBiT7XeheChv_0SwWpXLpXLpX6XK7OHe3Y2I2zvBtX6-5c_ipvz5mjh-lah_Q9V7bJRZ59Wqvp4tvrA1iu1Yr8APvjhXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803178302</pqid></control><display><type>article</type><title>The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution</title><source>Wiley</source><creator>Ameli, A. A. ; McDonnell, J. J. ; Bishop, K.</creator><creatorcontrib>Ameli, A. A. ; McDonnell, J. J. ; Bishop, K. ; Sveriges lantbruksuniversitet</creatorcontrib><description>The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>ISSN: 1099-1085</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.10777</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Catchment area ; Catchments ; Computational fluid dynamics ; Depth ; Distribution ; Environmental Management ; Exact solutions ; exponential decline in saturated hydraulic conductivity with depth ; Flow paths ; Fluid flow ; Gradients ; Hydraulic conductivity ; Hydraulics ; Hydrology ; Hypotheses ; integrated flow and transport model ; Interpolation ; Mass balance ; Mathematical models ; Miljöledning ; Model testing ; Numerical schemes ; Oceanografi, hydrologi, vattenresurser ; Oceanography, Hydrology, Water Resources ; Residence time ; Robustness (mathematics) ; Saturated-Unsaturated flow ; semi analytical model ; Storm seepage ; Subsoils ; Subsurface flow ; subsurface flow pathline ; subsurface flow pathline; Saturated‐Unsaturated flow ; Transit time ; transit time distribution ; Unsaturated flow ; Vertical distribution ; Water depth ; Water flow</subject><ispartof>Hydrological processes, 2016-07, Vol.30 (14), p.2438-2450</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423</citedby><cites>FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-300548$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/81231$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ameli, A. A.</creatorcontrib><creatorcontrib>McDonnell, J. J.</creatorcontrib><creatorcontrib>Bishop, K.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>Catchment area</subject><subject>Catchments</subject><subject>Computational fluid dynamics</subject><subject>Depth</subject><subject>Distribution</subject><subject>Environmental Management</subject><subject>Exact solutions</subject><subject>exponential decline in saturated hydraulic conductivity with depth</subject><subject>Flow paths</subject><subject>Fluid flow</subject><subject>Gradients</subject><subject>Hydraulic conductivity</subject><subject>Hydraulics</subject><subject>Hydrology</subject><subject>Hypotheses</subject><subject>integrated flow and transport model</subject><subject>Interpolation</subject><subject>Mass balance</subject><subject>Mathematical models</subject><subject>Miljöledning</subject><subject>Model testing</subject><subject>Numerical schemes</subject><subject>Oceanografi, hydrologi, vattenresurser</subject><subject>Oceanography, Hydrology, Water Resources</subject><subject>Residence time</subject><subject>Robustness (mathematics)</subject><subject>Saturated-Unsaturated flow</subject><subject>semi analytical model</subject><subject>Storm seepage</subject><subject>Subsoils</subject><subject>Subsurface flow</subject><subject>subsurface flow pathline</subject><subject>subsurface flow pathline; Saturated‐Unsaturated flow</subject><subject>Transit time</subject><subject>transit time distribution</subject><subject>Unsaturated flow</subject><subject>Vertical distribution</subject><subject>Water depth</subject><subject>Water flow</subject><issn>0885-6087</issn><issn>1099-1085</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkktv1DAUhSMEEkNhwT-wxAYkQv0Yxw67qsAMqDwWhYqV5SQ3jUvGTv1oOj-Hf4qHKV0gFVb3Lr5zZN9ziuIpwa8IxvRw2E55EULcKxYE13VJsOT3iwWWkpcVluJh8SiEC4zxEku8KH6eDoDgenIWbDR6RB20o7GAjEVBx-R1hA4N287rNJoWtc52qY3mysQtmk0csmCKw2ukkXVXMKINxMF1qHd-Zzs6b-w5MjEg6HtoI3IWzdnTo350M5p0HALStkPRaxtMRNFsAHUmRG-aFI2zj4sHvR4DPLmZB8XXd29Pj9flyefV--Ojk1JzKkSp-67hDe8Yk4xDQ0nV1pxWraRAuVi2ggnOa1qzpcRdnTfQXNQ9I0R0PV5SdlCUe98ww5QaNXmz0X6rnDYqjKnRfjdUACUJZSTzL-_k35hvR8r5c5WSYhjzpcz48z0-eXeZIES1MaGFcdQWXAqKSMp5VZH8wv-jWFaUZuOMPvsLvXDJ23wnRTnhOWSCyb-o7MWIkAzvDvBiT7XeheChv_0SwWpXLpXLpX6XK7OHe3Y2I2zvBtX6-5c_ipvz5mjh-lah_Q9V7bJRZ59Wqvp4tvrA1iu1Yr8APvjhXA</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Ameli, A. A.</creator><creator>McDonnell, J. J.</creator><creator>Bishop, K.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20160701</creationdate><title>The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution</title><author>Ameli, A. A. ; McDonnell, J. J. ; Bishop, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Catchment area</topic><topic>Catchments</topic><topic>Computational fluid dynamics</topic><topic>Depth</topic><topic>Distribution</topic><topic>Environmental Management</topic><topic>Exact solutions</topic><topic>exponential decline in saturated hydraulic conductivity with depth</topic><topic>Flow paths</topic><topic>Fluid flow</topic><topic>Gradients</topic><topic>Hydraulic conductivity</topic><topic>Hydraulics</topic><topic>Hydrology</topic><topic>Hypotheses</topic><topic>integrated flow and transport model</topic><topic>Interpolation</topic><topic>Mass balance</topic><topic>Mathematical models</topic><topic>Miljöledning</topic><topic>Model testing</topic><topic>Numerical schemes</topic><topic>Oceanografi, hydrologi, vattenresurser</topic><topic>Oceanography, Hydrology, Water Resources</topic><topic>Residence time</topic><topic>Robustness (mathematics)</topic><topic>Saturated-Unsaturated flow</topic><topic>semi analytical model</topic><topic>Storm seepage</topic><topic>Subsoils</topic><topic>Subsurface flow</topic><topic>subsurface flow pathline</topic><topic>subsurface flow pathline; Saturated‐Unsaturated flow</topic><topic>Transit time</topic><topic>transit time distribution</topic><topic>Unsaturated flow</topic><topic>Vertical distribution</topic><topic>Water depth</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ameli, A. A.</creatorcontrib><creatorcontrib>McDonnell, J. J.</creatorcontrib><creatorcontrib>Bishop, K.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ameli, A. A.</au><au>McDonnell, J. J.</au><au>Bishop, K.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>30</volume><issue>14</issue><spage>2438</spage><epage>2450</epage><pages>2438-2450</pages><issn>0885-6087</issn><issn>1099-1085</issn><eissn>1099-1085</eissn><abstract>The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi‐analytical solution for the simulation of 2D steady‐state saturated‐unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid‐free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth‐varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady‐state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/hyp.10777</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6087 |
ispartof | Hydrological processes, 2016-07, Vol.30 (14), p.2438-2450 |
issn | 0885-6087 1099-1085 1099-1085 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_81231 |
source | Wiley |
subjects | Catchment area Catchments Computational fluid dynamics Depth Distribution Environmental Management Exact solutions exponential decline in saturated hydraulic conductivity with depth Flow paths Fluid flow Gradients Hydraulic conductivity Hydraulics Hydrology Hypotheses integrated flow and transport model Interpolation Mass balance Mathematical models Miljöledning Model testing Numerical schemes Oceanografi, hydrologi, vattenresurser Oceanography, Hydrology, Water Resources Residence time Robustness (mathematics) Saturated-Unsaturated flow semi analytical model Storm seepage Subsoils Subsurface flow subsurface flow pathline subsurface flow pathline Saturated‐Unsaturated flow Transit time transit time distribution Unsaturated flow Vertical distribution Water depth Water flow |
title | The exponential decline in saturated hydraulic conductivity with depth: a novel method for exploring its effect on water flow paths and transit time distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20exponential%20decline%20in%20saturated%20hydraulic%20conductivity%20with%20depth:%20a%20novel%20method%20for%20exploring%20its%20effect%20on%20water%20flow%20paths%20and%20transit%20time%20distribution&rft.jtitle=Hydrological%20processes&rft.au=Ameli,%20A.%20A.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2016-07-01&rft.volume=30&rft.issue=14&rft.spage=2438&rft.epage=2450&rft.pages=2438-2450&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.10777&rft_dat=%3Cproquest_swepu%3E1825566129%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5277-afdb5b5d33835eb216c9526c82e2574c737559293480d9592ea579f3117df0423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1803178302&rft_id=info:pmid/&rfr_iscdi=true |