Loading…

The anaerobic Escherichia coli ribonucleotide reductase. Subunit structure and iron sulfur center

During anaerobic growth Escherichia coli uses a specific ribonucleoside triphosphate reductase for the production of deoxyribonucleoside triphosphates. The active species of this enzyme was previously found to be a large homodimer of 160 kDa (alpha 2) with a stable, oxygen-sensitive radical located...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1996-04, Vol.271 (16), p.9410-9416
Main Authors: Ollagnier, S, Mulliez, E, Gaillard, J, Eliasson, R, Fontecave, M, Reichard, P
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During anaerobic growth Escherichia coli uses a specific ribonucleoside triphosphate reductase for the production of deoxyribonucleoside triphosphates. The active species of this enzyme was previously found to be a large homodimer of 160 kDa (alpha 2) with a stable, oxygen-sensitive radical located at Gly-681 of the 80-kDa polypeptide chain. The radical is formed in an enzymatic reaction involving S-adenosylmethionine, NADPH, a reducing flavodoxin system and an additional 17.5-kDa polypeptide, previously called activase. Here, we demonstrate by EPR spectroscopy that this small protein contains a 4Fe-4S cluster that joins two peptides in a 35-kDa small homodimer (beta 2). A degraded form of this cluster may have been responsible for an EPR signal observed earlier in preparations of the large 160-kDa subunit that suggested the presence of a 3Fe-4S cluster in the reductase. These preparations were contaminated with a small amount of the small protein. The large and the small proteins form a tight complex. From sucrose gradient centrifugation, we determined a 1:1 stoichiometry of the two proteins in the complex. The anaerobic reductase thus has an alpha 2 beta 2 structure. We speculate that the small protein interacts with S-adenosylmethionine and forms a transient radical involved in the generation of the stable glycyl radical in the large protein that participates in the catalytic process.
ISSN:0021-9258
DOI:10.1074/jbc.271.16.9410