Loading…
The anaerobic Escherichia coli ribonucleotide reductase. Subunit structure and iron sulfur center
During anaerobic growth Escherichia coli uses a specific ribonucleoside triphosphate reductase for the production of deoxyribonucleoside triphosphates. The active species of this enzyme was previously found to be a large homodimer of 160 kDa (alpha 2) with a stable, oxygen-sensitive radical located...
Saved in:
Published in: | The Journal of biological chemistry 1996-04, Vol.271 (16), p.9410-9416 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | During anaerobic growth Escherichia coli uses a specific ribonucleoside triphosphate reductase for the production of deoxyribonucleoside triphosphates. The active species of this enzyme was previously found to be a large homodimer of 160 kDa (alpha 2) with a stable, oxygen-sensitive radical located at Gly-681 of the 80-kDa polypeptide chain. The radical is formed in an enzymatic reaction involving S-adenosylmethionine, NADPH, a reducing flavodoxin system and an additional 17.5-kDa polypeptide, previously called activase. Here, we demonstrate by EPR spectroscopy that this small protein contains a 4Fe-4S cluster that joins two peptides in a 35-kDa small homodimer (beta 2). A degraded form of this cluster may have been responsible for an EPR signal observed earlier in preparations of the large 160-kDa subunit that suggested the presence of a 3Fe-4S cluster in the reductase. These preparations were contaminated with a small amount of the small protein. The large and the small proteins form a tight complex. From sucrose gradient centrifugation, we determined a 1:1 stoichiometry of the two proteins in the complex. The anaerobic reductase thus has an alpha 2 beta 2 structure. We speculate that the small protein interacts with S-adenosylmethionine and forms a transient radical involved in the generation of the stable glycyl radical in the large protein that participates in the catalytic process. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.271.16.9410 |