Loading…
Differential diagnosis of systemic lupus erythematosus and Sjögren's syndrome using machine learning and multi-omics data
Systemic lupus erythematosus and primary Sjogren's syndrome are complex systemic autoimmune diseases that are often misdiagnosed. In this article, we demonstrate the potential of machine learning to perform differential diagnosis of these similar pathologies using gene expression and methylatio...
Saved in:
Published in: | Computers in biology and medicine 2023-01, Vol.152, p.106373, Article 106373 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Systemic lupus erythematosus and primary Sjogren's syndrome are complex systemic autoimmune diseases that are often misdiagnosed. In this article, we demonstrate the potential of machine learning to perform differential diagnosis of these similar pathologies using gene expression and methylation data from 651 individuals. Furthermore, we analyzed the impact of the heterogeneity of these diseases on the performance of the predictive models, discovering that patients assigned to a specific molecular cluster are misclassified more often and affect to the overall performance of the predictive models. In addition, we found that the samples characterized by a high interferon activity are the ones predicted with more accuracy, followed by the samples with high inflammatory activity. Finally, we identified a group of biomarkers that improve the predictions compared to using the whole data and we validated them with external studies from other tissues and technological platforms.
•Multi-omics data were used for differential diagnosis of SLE and pSjS.•Molecular heterogeneity drives the classifiers performance.•Biomarkers for gene expression and DNA methylation were proposed and validated. |
---|---|
ISSN: | 0010-4825 1879-0534 1879-0534 |
DOI: | 10.1016/j.compbiomed.2022.106373 |