Loading…
Hydrogen Gas Inhalation Attenuates Acute Impulse Noise Trauma: A Preclinical In Vivo Study
Objective: Molecular hydrogen (H2) has shown therapeutic potential in several oxidative stress-related conditions in humans, is well-tolerated, and is easily administered via inhalation.The aim of this preclinical in vivo study was to investigate whether impulse noise trauma can be prevented by H2 w...
Saved in:
Published in: | Annals of otology, rhinology & laryngology rhinology & laryngology, 2023-08, Vol.132 (8), p.865-872 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objective:
Molecular hydrogen (H2) has shown therapeutic potential in several oxidative stress-related conditions in humans, is well-tolerated, and is easily administered via inhalation.The aim of this preclinical in vivo study was to investigate whether impulse noise trauma can be prevented by H2 when inhaled immediately after impulse noise exposure.
Methods:
Guinea pigs (n = 26) were subjected to impulse noise (n = 400; 156 dB SPL; 0.33/s; n = 11; the Noise group), to impulse noise immediately followed by H2 inhalation (2 mol%; 500 ml/min; 1 hour; n = 10; the Noise + H2 group), or to H2 inhalation (n = 5; the H2 group). The acoustically evoked ABR threshold at 3.15, 6.30, 12.5, 20.0, and 30.0 kHz was assessed before and 4 days after impulse noise and/or H2 exposure. The cochleae were harvested after the final ABR assessment for quantification of hair cells.
Results:
Noise exposure caused ABR threshold elevations at all frequencies (median 35, 35, 30, 35, and 35 dB SPL, the Noise group; 20, 25, 10, 13, and 20 dB SPL, the Noise + H2 group; P |
---|---|
ISSN: | 0003-4894 1943-572X 1943-572X |
DOI: | 10.1177/00034894221118764 |