Loading…
Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages
Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells...
Saved in:
Published in: | Science advances 2022-06, Vol.8 (23), p.eabm6340-eabm6340 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443 |
container_end_page | eabm6340 |
container_issue | 23 |
container_start_page | eabm6340 |
container_title | Science advances |
container_volume | 8 |
creator | Hu, Yizhou Jiang, Yiwen Behnan, Jinan Ribeiro, Mariana Messias Kalantzi, Chrysoula Zhang, Ming-Dong Lou, Daohua Häring, Martin Sharma, Nilesh Okawa, Satoshi Del Sol, Antonio Adameyko, Igor Svensson, Mikael Persson, Oscar Ernfors, Patrik |
description | Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome. |
doi_str_mv | 10.1126/sciadv.abm6340 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_452869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674346269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443</originalsourceid><addsrcrecordid>eNpVUUtv1DAQthAVrdpeOSIfuWSJ38kFCVUUkCq40LM1sSeLqRMvdrIV_x63u1TtyaP5HjPjj5C3rN0wxvWH4gL4_QaGSQvZviJnXBjVcCW718_qU3JZyu-2bZnUWrH-DTkVShslmTwju--4Zoh0xuU-5TsaEfIc5i31OIYZC93GkIYIZUkT0BFhWXPtLokOSNNYdY9yV5sL3WEOeyhujZBpyjSDDxWsFkBjdYMtlgtyMkIseHl8z8nt9eefV1-bmx9fvl19ummc5N3SgGfOKW46YwaNMABqxrt6teukkg419robzKC0cL4znHOBnnnReq56J6U4J83Bt9zjbh3sLocJ8l-bINhj665WaKXine4r_-OBX5EJvcN5qYe9kL1E5vDLbtPe9syY1uhq8P5okNOftX6HnUJxGCPMmNZiuTZSSM0fZ20OVJdTKRnHpzGstQ_J2kOy9phsFbx7vtwT_X-O4h9GvKTD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674346269</pqid></control><display><type>article</type><title>Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Hu, Yizhou ; Jiang, Yiwen ; Behnan, Jinan ; Ribeiro, Mariana Messias ; Kalantzi, Chrysoula ; Zhang, Ming-Dong ; Lou, Daohua ; Häring, Martin ; Sharma, Nilesh ; Okawa, Satoshi ; Del Sol, Antonio ; Adameyko, Igor ; Svensson, Mikael ; Persson, Oscar ; Ernfors, Patrik</creator><creatorcontrib>Hu, Yizhou ; Jiang, Yiwen ; Behnan, Jinan ; Ribeiro, Mariana Messias ; Kalantzi, Chrysoula ; Zhang, Ming-Dong ; Lou, Daohua ; Häring, Martin ; Sharma, Nilesh ; Okawa, Satoshi ; Del Sol, Antonio ; Adameyko, Igor ; Svensson, Mikael ; Persson, Oscar ; Ernfors, Patrik</creatorcontrib><description>Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abm6340</identifier><identifier>PMID: 35675414</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomedicine and Life Sciences ; Cell Biology ; Computer Science ; SciAdv r-articles</subject><ispartof>Science advances, 2022-06, Vol.8 (23), p.eabm6340-eabm6340</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443</citedby><cites>FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443</cites><orcidid>0000-0001-5906-7443 ; 0000-0002-3603-8073 ; 0000-0001-5780-0971 ; 0000-0003-4517-2650 ; 0000-0002-6348-1994 ; 0000-0003-4808-6643 ; 0000-0003-4949-0533 ; 0000-0001-5471-0356 ; 0000-0002-9926-617X ; 0000-0003-1179-7003 ; 0000-0002-2635-0258 ; 0000-0002-1140-3986 ; 0000-0001-7031-998X ; 0000-0001-7777-3210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177076/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177076/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2870,2871,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35675414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:149999886$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yizhou</creatorcontrib><creatorcontrib>Jiang, Yiwen</creatorcontrib><creatorcontrib>Behnan, Jinan</creatorcontrib><creatorcontrib>Ribeiro, Mariana Messias</creatorcontrib><creatorcontrib>Kalantzi, Chrysoula</creatorcontrib><creatorcontrib>Zhang, Ming-Dong</creatorcontrib><creatorcontrib>Lou, Daohua</creatorcontrib><creatorcontrib>Häring, Martin</creatorcontrib><creatorcontrib>Sharma, Nilesh</creatorcontrib><creatorcontrib>Okawa, Satoshi</creatorcontrib><creatorcontrib>Del Sol, Antonio</creatorcontrib><creatorcontrib>Adameyko, Igor</creatorcontrib><creatorcontrib>Svensson, Mikael</creatorcontrib><creatorcontrib>Persson, Oscar</creatorcontrib><creatorcontrib>Ernfors, Patrik</creatorcontrib><title>Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.</description><subject>Biomedicine and Life Sciences</subject><subject>Cell Biology</subject><subject>Computer Science</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUUtv1DAQthAVrdpeOSIfuWSJ38kFCVUUkCq40LM1sSeLqRMvdrIV_x63u1TtyaP5HjPjj5C3rN0wxvWH4gL4_QaGSQvZviJnXBjVcCW718_qU3JZyu-2bZnUWrH-DTkVShslmTwju--4Zoh0xuU-5TsaEfIc5i31OIYZC93GkIYIZUkT0BFhWXPtLokOSNNYdY9yV5sL3WEOeyhujZBpyjSDDxWsFkBjdYMtlgtyMkIseHl8z8nt9eefV1-bmx9fvl19ummc5N3SgGfOKW46YwaNMABqxrt6teukkg419robzKC0cL4znHOBnnnReq56J6U4J83Bt9zjbh3sLocJ8l-bINhj665WaKXine4r_-OBX5EJvcN5qYe9kL1E5vDLbtPe9syY1uhq8P5okNOftX6HnUJxGCPMmNZiuTZSSM0fZ20OVJdTKRnHpzGstQ_J2kOy9phsFbx7vtwT_X-O4h9GvKTD</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Hu, Yizhou</creator><creator>Jiang, Yiwen</creator><creator>Behnan, Jinan</creator><creator>Ribeiro, Mariana Messias</creator><creator>Kalantzi, Chrysoula</creator><creator>Zhang, Ming-Dong</creator><creator>Lou, Daohua</creator><creator>Häring, Martin</creator><creator>Sharma, Nilesh</creator><creator>Okawa, Satoshi</creator><creator>Del Sol, Antonio</creator><creator>Adameyko, Igor</creator><creator>Svensson, Mikael</creator><creator>Persson, Oscar</creator><creator>Ernfors, Patrik</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-5906-7443</orcidid><orcidid>https://orcid.org/0000-0002-3603-8073</orcidid><orcidid>https://orcid.org/0000-0001-5780-0971</orcidid><orcidid>https://orcid.org/0000-0003-4517-2650</orcidid><orcidid>https://orcid.org/0000-0002-6348-1994</orcidid><orcidid>https://orcid.org/0000-0003-4808-6643</orcidid><orcidid>https://orcid.org/0000-0003-4949-0533</orcidid><orcidid>https://orcid.org/0000-0001-5471-0356</orcidid><orcidid>https://orcid.org/0000-0002-9926-617X</orcidid><orcidid>https://orcid.org/0000-0003-1179-7003</orcidid><orcidid>https://orcid.org/0000-0002-2635-0258</orcidid><orcidid>https://orcid.org/0000-0002-1140-3986</orcidid><orcidid>https://orcid.org/0000-0001-7031-998X</orcidid><orcidid>https://orcid.org/0000-0001-7777-3210</orcidid></search><sort><creationdate>20220610</creationdate><title>Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages</title><author>Hu, Yizhou ; Jiang, Yiwen ; Behnan, Jinan ; Ribeiro, Mariana Messias ; Kalantzi, Chrysoula ; Zhang, Ming-Dong ; Lou, Daohua ; Häring, Martin ; Sharma, Nilesh ; Okawa, Satoshi ; Del Sol, Antonio ; Adameyko, Igor ; Svensson, Mikael ; Persson, Oscar ; Ernfors, Patrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Cell Biology</topic><topic>Computer Science</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yizhou</creatorcontrib><creatorcontrib>Jiang, Yiwen</creatorcontrib><creatorcontrib>Behnan, Jinan</creatorcontrib><creatorcontrib>Ribeiro, Mariana Messias</creatorcontrib><creatorcontrib>Kalantzi, Chrysoula</creatorcontrib><creatorcontrib>Zhang, Ming-Dong</creatorcontrib><creatorcontrib>Lou, Daohua</creatorcontrib><creatorcontrib>Häring, Martin</creatorcontrib><creatorcontrib>Sharma, Nilesh</creatorcontrib><creatorcontrib>Okawa, Satoshi</creatorcontrib><creatorcontrib>Del Sol, Antonio</creatorcontrib><creatorcontrib>Adameyko, Igor</creatorcontrib><creatorcontrib>Svensson, Mikael</creatorcontrib><creatorcontrib>Persson, Oscar</creatorcontrib><creatorcontrib>Ernfors, Patrik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yizhou</au><au>Jiang, Yiwen</au><au>Behnan, Jinan</au><au>Ribeiro, Mariana Messias</au><au>Kalantzi, Chrysoula</au><au>Zhang, Ming-Dong</au><au>Lou, Daohua</au><au>Häring, Martin</au><au>Sharma, Nilesh</au><au>Okawa, Satoshi</au><au>Del Sol, Antonio</au><au>Adameyko, Igor</au><au>Svensson, Mikael</au><au>Persson, Oscar</au><au>Ernfors, Patrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-06-10</date><risdate>2022</risdate><volume>8</volume><issue>23</issue><spage>eabm6340</spage><epage>eabm6340</epage><pages>eabm6340-eabm6340</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>35675414</pmid><doi>10.1126/sciadv.abm6340</doi><orcidid>https://orcid.org/0000-0001-5906-7443</orcidid><orcidid>https://orcid.org/0000-0002-3603-8073</orcidid><orcidid>https://orcid.org/0000-0001-5780-0971</orcidid><orcidid>https://orcid.org/0000-0003-4517-2650</orcidid><orcidid>https://orcid.org/0000-0002-6348-1994</orcidid><orcidid>https://orcid.org/0000-0003-4808-6643</orcidid><orcidid>https://orcid.org/0000-0003-4949-0533</orcidid><orcidid>https://orcid.org/0000-0001-5471-0356</orcidid><orcidid>https://orcid.org/0000-0002-9926-617X</orcidid><orcidid>https://orcid.org/0000-0003-1179-7003</orcidid><orcidid>https://orcid.org/0000-0002-2635-0258</orcidid><orcidid>https://orcid.org/0000-0002-1140-3986</orcidid><orcidid>https://orcid.org/0000-0001-7031-998X</orcidid><orcidid>https://orcid.org/0000-0001-7777-3210</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2022-06, Vol.8 (23), p.eabm6340-eabm6340 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_452869 |
source | American Association for the Advancement of Science; PubMed Central |
subjects | Biomedicine and Life Sciences Cell Biology Computer Science SciAdv r-articles |
title | Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20learning%20defines%20glioblastoma%20features%20to%20be%20of%20neural%20crest%20perivascular%20or%20radial%20glia%20lineages&rft.jtitle=Science%20advances&rft.au=Hu,%20Yizhou&rft.date=2022-06-10&rft.volume=8&rft.issue=23&rft.spage=eabm6340&rft.epage=eabm6340&rft.pages=eabm6340-eabm6340&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abm6340&rft_dat=%3Cproquest_swepu%3E2674346269%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674346269&rft_id=info:pmid/35675414&rfr_iscdi=true |