Loading…

Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages

Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells...

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2022-06, Vol.8 (23), p.eabm6340-eabm6340
Main Authors: Hu, Yizhou, Jiang, Yiwen, Behnan, Jinan, Ribeiro, Mariana Messias, Kalantzi, Chrysoula, Zhang, Ming-Dong, Lou, Daohua, Häring, Martin, Sharma, Nilesh, Okawa, Satoshi, Del Sol, Antonio, Adameyko, Igor, Svensson, Mikael, Persson, Oscar, Ernfors, Patrik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443
cites cdi_FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443
container_end_page eabm6340
container_issue 23
container_start_page eabm6340
container_title Science advances
container_volume 8
creator Hu, Yizhou
Jiang, Yiwen
Behnan, Jinan
Ribeiro, Mariana Messias
Kalantzi, Chrysoula
Zhang, Ming-Dong
Lou, Daohua
Häring, Martin
Sharma, Nilesh
Okawa, Satoshi
Del Sol, Antonio
Adameyko, Igor
Svensson, Mikael
Persson, Oscar
Ernfors, Patrik
description Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.
doi_str_mv 10.1126/sciadv.abm6340
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_452869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674346269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443</originalsourceid><addsrcrecordid>eNpVUUtv1DAQthAVrdpeOSIfuWSJ38kFCVUUkCq40LM1sSeLqRMvdrIV_x63u1TtyaP5HjPjj5C3rN0wxvWH4gL4_QaGSQvZviJnXBjVcCW718_qU3JZyu-2bZnUWrH-DTkVShslmTwju--4Zoh0xuU-5TsaEfIc5i31OIYZC93GkIYIZUkT0BFhWXPtLokOSNNYdY9yV5sL3WEOeyhujZBpyjSDDxWsFkBjdYMtlgtyMkIseHl8z8nt9eefV1-bmx9fvl19ummc5N3SgGfOKW46YwaNMABqxrt6teukkg419robzKC0cL4znHOBnnnReq56J6U4J83Bt9zjbh3sLocJ8l-bINhj665WaKXine4r_-OBX5EJvcN5qYe9kL1E5vDLbtPe9syY1uhq8P5okNOftX6HnUJxGCPMmNZiuTZSSM0fZ20OVJdTKRnHpzGstQ_J2kOy9phsFbx7vtwT_X-O4h9GvKTD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674346269</pqid></control><display><type>article</type><title>Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Hu, Yizhou ; Jiang, Yiwen ; Behnan, Jinan ; Ribeiro, Mariana Messias ; Kalantzi, Chrysoula ; Zhang, Ming-Dong ; Lou, Daohua ; Häring, Martin ; Sharma, Nilesh ; Okawa, Satoshi ; Del Sol, Antonio ; Adameyko, Igor ; Svensson, Mikael ; Persson, Oscar ; Ernfors, Patrik</creator><creatorcontrib>Hu, Yizhou ; Jiang, Yiwen ; Behnan, Jinan ; Ribeiro, Mariana Messias ; Kalantzi, Chrysoula ; Zhang, Ming-Dong ; Lou, Daohua ; Häring, Martin ; Sharma, Nilesh ; Okawa, Satoshi ; Del Sol, Antonio ; Adameyko, Igor ; Svensson, Mikael ; Persson, Oscar ; Ernfors, Patrik</creatorcontrib><description>Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abm6340</identifier><identifier>PMID: 35675414</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Biomedicine and Life Sciences ; Cell Biology ; Computer Science ; SciAdv r-articles</subject><ispartof>Science advances, 2022-06, Vol.8 (23), p.eabm6340-eabm6340</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443</citedby><cites>FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443</cites><orcidid>0000-0001-5906-7443 ; 0000-0002-3603-8073 ; 0000-0001-5780-0971 ; 0000-0003-4517-2650 ; 0000-0002-6348-1994 ; 0000-0003-4808-6643 ; 0000-0003-4949-0533 ; 0000-0001-5471-0356 ; 0000-0002-9926-617X ; 0000-0003-1179-7003 ; 0000-0002-2635-0258 ; 0000-0002-1140-3986 ; 0000-0001-7031-998X ; 0000-0001-7777-3210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177076/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177076/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,2870,2871,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35675414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:149999886$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yizhou</creatorcontrib><creatorcontrib>Jiang, Yiwen</creatorcontrib><creatorcontrib>Behnan, Jinan</creatorcontrib><creatorcontrib>Ribeiro, Mariana Messias</creatorcontrib><creatorcontrib>Kalantzi, Chrysoula</creatorcontrib><creatorcontrib>Zhang, Ming-Dong</creatorcontrib><creatorcontrib>Lou, Daohua</creatorcontrib><creatorcontrib>Häring, Martin</creatorcontrib><creatorcontrib>Sharma, Nilesh</creatorcontrib><creatorcontrib>Okawa, Satoshi</creatorcontrib><creatorcontrib>Del Sol, Antonio</creatorcontrib><creatorcontrib>Adameyko, Igor</creatorcontrib><creatorcontrib>Svensson, Mikael</creatorcontrib><creatorcontrib>Persson, Oscar</creatorcontrib><creatorcontrib>Ernfors, Patrik</creatorcontrib><title>Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.</description><subject>Biomedicine and Life Sciences</subject><subject>Cell Biology</subject><subject>Computer Science</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUUtv1DAQthAVrdpeOSIfuWSJ38kFCVUUkCq40LM1sSeLqRMvdrIV_x63u1TtyaP5HjPjj5C3rN0wxvWH4gL4_QaGSQvZviJnXBjVcCW718_qU3JZyu-2bZnUWrH-DTkVShslmTwju--4Zoh0xuU-5TsaEfIc5i31OIYZC93GkIYIZUkT0BFhWXPtLokOSNNYdY9yV5sL3WEOeyhujZBpyjSDDxWsFkBjdYMtlgtyMkIseHl8z8nt9eefV1-bmx9fvl19ummc5N3SgGfOKW46YwaNMABqxrt6teukkg419robzKC0cL4znHOBnnnReq56J6U4J83Bt9zjbh3sLocJ8l-bINhj665WaKXine4r_-OBX5EJvcN5qYe9kL1E5vDLbtPe9syY1uhq8P5okNOftX6HnUJxGCPMmNZiuTZSSM0fZ20OVJdTKRnHpzGstQ_J2kOy9phsFbx7vtwT_X-O4h9GvKTD</recordid><startdate>20220610</startdate><enddate>20220610</enddate><creator>Hu, Yizhou</creator><creator>Jiang, Yiwen</creator><creator>Behnan, Jinan</creator><creator>Ribeiro, Mariana Messias</creator><creator>Kalantzi, Chrysoula</creator><creator>Zhang, Ming-Dong</creator><creator>Lou, Daohua</creator><creator>Häring, Martin</creator><creator>Sharma, Nilesh</creator><creator>Okawa, Satoshi</creator><creator>Del Sol, Antonio</creator><creator>Adameyko, Igor</creator><creator>Svensson, Mikael</creator><creator>Persson, Oscar</creator><creator>Ernfors, Patrik</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-5906-7443</orcidid><orcidid>https://orcid.org/0000-0002-3603-8073</orcidid><orcidid>https://orcid.org/0000-0001-5780-0971</orcidid><orcidid>https://orcid.org/0000-0003-4517-2650</orcidid><orcidid>https://orcid.org/0000-0002-6348-1994</orcidid><orcidid>https://orcid.org/0000-0003-4808-6643</orcidid><orcidid>https://orcid.org/0000-0003-4949-0533</orcidid><orcidid>https://orcid.org/0000-0001-5471-0356</orcidid><orcidid>https://orcid.org/0000-0002-9926-617X</orcidid><orcidid>https://orcid.org/0000-0003-1179-7003</orcidid><orcidid>https://orcid.org/0000-0002-2635-0258</orcidid><orcidid>https://orcid.org/0000-0002-1140-3986</orcidid><orcidid>https://orcid.org/0000-0001-7031-998X</orcidid><orcidid>https://orcid.org/0000-0001-7777-3210</orcidid></search><sort><creationdate>20220610</creationdate><title>Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages</title><author>Hu, Yizhou ; Jiang, Yiwen ; Behnan, Jinan ; Ribeiro, Mariana Messias ; Kalantzi, Chrysoula ; Zhang, Ming-Dong ; Lou, Daohua ; Häring, Martin ; Sharma, Nilesh ; Okawa, Satoshi ; Del Sol, Antonio ; Adameyko, Igor ; Svensson, Mikael ; Persson, Oscar ; Ernfors, Patrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedicine and Life Sciences</topic><topic>Cell Biology</topic><topic>Computer Science</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yizhou</creatorcontrib><creatorcontrib>Jiang, Yiwen</creatorcontrib><creatorcontrib>Behnan, Jinan</creatorcontrib><creatorcontrib>Ribeiro, Mariana Messias</creatorcontrib><creatorcontrib>Kalantzi, Chrysoula</creatorcontrib><creatorcontrib>Zhang, Ming-Dong</creatorcontrib><creatorcontrib>Lou, Daohua</creatorcontrib><creatorcontrib>Häring, Martin</creatorcontrib><creatorcontrib>Sharma, Nilesh</creatorcontrib><creatorcontrib>Okawa, Satoshi</creatorcontrib><creatorcontrib>Del Sol, Antonio</creatorcontrib><creatorcontrib>Adameyko, Igor</creatorcontrib><creatorcontrib>Svensson, Mikael</creatorcontrib><creatorcontrib>Persson, Oscar</creatorcontrib><creatorcontrib>Ernfors, Patrik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yizhou</au><au>Jiang, Yiwen</au><au>Behnan, Jinan</au><au>Ribeiro, Mariana Messias</au><au>Kalantzi, Chrysoula</au><au>Zhang, Ming-Dong</au><au>Lou, Daohua</au><au>Häring, Martin</au><au>Sharma, Nilesh</au><au>Okawa, Satoshi</au><au>Del Sol, Antonio</au><au>Adameyko, Igor</au><au>Svensson, Mikael</au><au>Persson, Oscar</au><au>Ernfors, Patrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2022-06-10</date><risdate>2022</risdate><volume>8</volume><issue>23</issue><spage>eabm6340</spage><epage>eabm6340</epage><pages>eabm6340-eabm6340</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Glioblastoma is believed to originate from nervous system cells; however, a putative origin from vessel-associated progenitor cells has not been considered. We deeply single-cell RNA-sequenced glioblastoma progenitor cells of 18 patients and integrated 710 bulk tumors and 73,495 glioma single cells of 100 patients to determine the relation of glioblastoma cells to normal brain cell types. A novel neural network-based projection of the developmental trajectory of normal brain cells uncovered two principal cell-lineage features of glioblastoma, neural crest perivascular and radial glia, carrying defining methylation patterns and survival differences. Consistently, introducing tumorigenic alterations in naïve human brain perivascular cells resulted in brain tumors. Thus, our results suggest that glioblastoma can arise from the brains' vasculature, and patients with such glioblastoma have a significantly poorer outcome.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>35675414</pmid><doi>10.1126/sciadv.abm6340</doi><orcidid>https://orcid.org/0000-0001-5906-7443</orcidid><orcidid>https://orcid.org/0000-0002-3603-8073</orcidid><orcidid>https://orcid.org/0000-0001-5780-0971</orcidid><orcidid>https://orcid.org/0000-0003-4517-2650</orcidid><orcidid>https://orcid.org/0000-0002-6348-1994</orcidid><orcidid>https://orcid.org/0000-0003-4808-6643</orcidid><orcidid>https://orcid.org/0000-0003-4949-0533</orcidid><orcidid>https://orcid.org/0000-0001-5471-0356</orcidid><orcidid>https://orcid.org/0000-0002-9926-617X</orcidid><orcidid>https://orcid.org/0000-0003-1179-7003</orcidid><orcidid>https://orcid.org/0000-0002-2635-0258</orcidid><orcidid>https://orcid.org/0000-0002-1140-3986</orcidid><orcidid>https://orcid.org/0000-0001-7031-998X</orcidid><orcidid>https://orcid.org/0000-0001-7777-3210</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2022-06, Vol.8 (23), p.eabm6340-eabm6340
issn 2375-2548
2375-2548
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_452869
source American Association for the Advancement of Science; PubMed Central
subjects Biomedicine and Life Sciences
Cell Biology
Computer Science
SciAdv r-articles
title Neural network learning defines glioblastoma features to be of neural crest perivascular or radial glia lineages
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20learning%20defines%20glioblastoma%20features%20to%20be%20of%20neural%20crest%20perivascular%20or%20radial%20glia%20lineages&rft.jtitle=Science%20advances&rft.au=Hu,%20Yizhou&rft.date=2022-06-10&rft.volume=8&rft.issue=23&rft.spage=eabm6340&rft.epage=eabm6340&rft.pages=eabm6340-eabm6340&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abm6340&rft_dat=%3Cproquest_swepu%3E2674346269%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-ad1cc527877b6eabae6128112c8454ce6e968b7b563cd872223ed1d30d259c443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674346269&rft_id=info:pmid/35675414&rfr_iscdi=true