Loading…

Decidual stromal cells support tolerance at the human foetal-maternal interface by inducing regulatory M2 macrophages and regulatory T-cells

[Display omitted] •Decidual stromal cells induce and promote survival of decidual-type macrophages.•Decidual stomal cells induce regulatory T-cells in a paracrine manner.•Both 1st trimester and term stromal cells possess these immune regulatory abilities.•Protein profiling supports prominent regulat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of reproductive immunology 2021-08, Vol.146, p.103330-103330, Article 103330
Main Authors: Lindau, R., Vondra, S., Spreckels, J., Solders, M., Svensson-Arvelund, J., Berg, G., Pollheimer, J., Kaipe, H., Jenmalm, M.C., Ernerudh, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •Decidual stromal cells induce and promote survival of decidual-type macrophages.•Decidual stomal cells induce regulatory T-cells in a paracrine manner.•Both 1st trimester and term stromal cells possess these immune regulatory abilities.•Protein profiling supports prominent regulatory functions of decidual stromal cells.•Decidual stromal cells may initiate and support fetal-maternal immune tolerance. During pregnancy, the semi-allogeneic nature of the foetus requires maternal immune adaption and acquisition of tolerance at the foetal-maternal interface. Macrophages with regulatory properties and regulatory T (Treg) cells are central in promoting foetal tolerance and are enriched in the decidua (the uterine endometrium during pregnancy). Although tissue-resident decidual stromal cells (DSC) have been implicated in regulatory functions, it is not known if they are able to induce the regulatory phenotype of macrophages and T-cells. In this study we report that maternally derived DSC are able to induce homeostatic M2 macrophages and Treg cells. CD14+ monocytes and CD4+ T-cells from healthy non-pregnant women were cultured in the presence or absence of conditioned medium (CM) from DSC isolated from 1st trimester and term placentas. DSC-CM alone was able to promote the survival of macrophages and to induce a regulatory CD14brightCD163+CD209+CD86dim phenotype, typical for decidual macrophages and similar to that induced by M-CSF. Interestingly, DSC-CM was also able to overrule the pro-inflammatory effects of GM-CSF by upregulating CD14, CD163 and CD209. Protein-profiling showed that M-CSF was secreted by DSC, and blocking of M-CSF partially reversed the M2 phenotype and reduced viability. DSC-CM also expanded CD25brightFoxp3+ Treg cells, an expansion that was abolished by a SMAD3-inhibitor, indicating the contribution of TGF-β signaling. In conclusion, our findings collectively emphasize the role of tissue-resident stromal cells in shaping the tolerogenic environment at the foetal-maternal interface.
ISSN:0165-0378
1872-7603
1872-7603
DOI:10.1016/j.jri.2021.103330