Loading…

Reactive Oxygen Species and Antioxidants in Carcinogenesis and Tumor Therapy

Strictly regulated balance between the formation and utilization of reactive oxygen species (ROS) is the basis of normal functioning of organisms. ROS play an important role in the regulation of many metabolic processes; however, excessive content of ROS leads to the development of various disorders...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Moscow) 2020-10, Vol.85 (10), p.1254-1266
Main Authors: Vostrikova, S. M., Grinev, A. B., Gogvadze, V. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Strictly regulated balance between the formation and utilization of reactive oxygen species (ROS) is the basis of normal functioning of organisms. ROS play an important role in the regulation of many metabolic processes; however, excessive content of ROS leads to the development of various disorders, including oncological diseases, as a result of ROS-induced mutations in DNA. In tumors, high levels of oxygen radicals promote cell proliferation and metastasis. On the other hand, high content of ROS can trigger cell death, a phenomenon used in the antitumor therapy. Water- and lipid-soluble antioxidants, as well as antioxidant enzyme systems, can inhibit ROS generation; however, they should be used with caution. Antioxidants can suppress ROS-dependent cell proliferation and metastasis, but at the same time, they may inhibit the death of tumor cells if the antitumor therapeutic agents stimulate oxidative stress. The data on the role of antioxidants in the death of tumor cells and on the effects of antioxidants taken as dietary supplements during antitumor therapy, are contradictory. This review focuses on the mechanisms by which antioxidants can affect tumor and healthy cells.
ISSN:0006-2979
1608-3040
1608-3040
DOI:10.1134/S0006297920100132