Loading…

GABPA is a master regulator of luminal identity and restrains aggressive diseases in bladder cancer

TERT promoter mutations occur in the majority of glioblastoma, bladder cancer (BC), and other malignancies while the ETS family transcription factors GABPA and its partner GABPB1 activate the mutant TERT promoter and telomerase in these tumors. GABPA depletion or the disruption of the GABPA/GABPB1 c...

Full description

Saved in:
Bibliographic Details
Published in:Cell death and differentiation 2020-06, Vol.27 (6), p.1862-1877
Main Authors: Guo, Yanxia, Yuan, Xiaotian, Li, Kailin, Dai, Mingkai, Zhang, Lu, Wu, Yujiao, Sun, Chao, Chen, Yuan, Cheng, Guanghui, Liu, Cheng, Strååt, Klas, Kong, Feng, Zhao, Shengtian, Bjorkhölm, Magnus, Xu, Dawei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-73444b0e84d7f7aceccd279c7726ad4d8eafb1c74fe8dbc2a48e4deaca04222a3
cites cdi_FETCH-LOGICAL-c536t-73444b0e84d7f7aceccd279c7726ad4d8eafb1c74fe8dbc2a48e4deaca04222a3
container_end_page 1877
container_issue 6
container_start_page 1862
container_title Cell death and differentiation
container_volume 27
creator Guo, Yanxia
Yuan, Xiaotian
Li, Kailin
Dai, Mingkai
Zhang, Lu
Wu, Yujiao
Sun, Chao
Chen, Yuan
Cheng, Guanghui
Liu, Cheng
Strååt, Klas
Kong, Feng
Zhao, Shengtian
Bjorkhölm, Magnus
Xu, Dawei
description TERT promoter mutations occur in the majority of glioblastoma, bladder cancer (BC), and other malignancies while the ETS family transcription factors GABPA and its partner GABPB1 activate the mutant TERT promoter and telomerase in these tumors. GABPA depletion or the disruption of the GABPA/GABPB1 complex by knocking down GABPB1 was shown to inhibit telomerase, thereby eliminating the tumorigenic potential of glioblastoma cells. GABPA/B1 is thus suggested as a cancer therapeutic target. However, it is unclear about its role in BC. Here we unexpectedly observed that GABPA ablation inhibited TERT expression, but robustly increased proliferation, stem, and invasive phenotypes and cisplatin resistance in BC cells, while its overexpression exhibited opposite effects, and inhibited in vivo metastasizing in a xenograft transplant model. Mechanistically, GABPA directly activates the transcription of FoxA1 and GATA3, key transcription factors driving luminal differentiation of urothelial cells. Consistently, TCGA/GEO dataset analyses show that GABPA expression is correlated positively with luminal while negatively with basal signatures. Luminal tumors express higher GABPA than do basal ones. Lower GABPA expression is associated with the GABPA gene methylation or deletion (especially in basal subtype of BC tumors), and predicted significantly shorter patient survival based on TCGA and our cohort of BC patient analyses. Taken together, GABPA dictates luminal identity of BC cells and inhibits aggressive diseases in BC by promoting cellular differentiation despite its stimulatory effect on telomerase/TERT activation. Given these biological functions and its frequent methylation and/or deletion, GABPA serves as a tumor suppressor rather than oncogenic factor in BC. The GABPA effect on oncogenesis is context-dependent and its targeting for telomerase inhibition in BC may promote disease metastasizing.
doi_str_mv 10.1038/s41418-019-0466-7
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_475140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475031269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-73444b0e84d7f7aceccd279c7726ad4d8eafb1c74fe8dbc2a48e4deaca04222a3</originalsourceid><addsrcrecordid>eNp9Uk1v1TAQtBCIlgc_gAuyxIVLir9iJxekRwUtUiU4wNna2JvgkpcUOynqv2er9ygUCU5ee2fGu6Nh7LkUJ1Lo5nUx0simErKthLG2cg_YsTTOVrUR-iHVuhZVK4w7Yk9KuRRCWNfax-xIy0Yooe0xC2fbt5-2PBUOfAdlwcwzDusIy5z53PNx3aUJRp4iTktabjhMkRBlyZAmIg0DXUq6Rh5TQShYeJp4N0KMJBVgCpifskc9jAWfHc4N-_L-3efT8-ri49mH0-1FFWptl8ppY0wnsDHR9Q4ChhCVa4NzykI0sUHoOxmc6bGJXVBgGjQRIYAwSinQG1btdcsPvFo7f5XTDvKNnyH5w9M3qtAbV0tyaMPe7PHU2WEMtGGG8R7tfmdKX_0wX3unjKmtIoFXB4E8f1_JFL9LJeA4woTzWrzSSkmjtWoI-vIv6OW8ZnKWUDSO0FLZ9v8oUTe6bUhuw-QeFfJcSsb-bmQp_G0w_D4YnoLhb4PhHXFe_LnrHeNXEgigDuZRaxow__7636o_AU8PxTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2405839843</pqid></control><display><type>article</type><title>GABPA is a master regulator of luminal identity and restrains aggressive diseases in bladder cancer</title><source>Open Access: PubMed Central</source><source>Springer Link</source><creator>Guo, Yanxia ; Yuan, Xiaotian ; Li, Kailin ; Dai, Mingkai ; Zhang, Lu ; Wu, Yujiao ; Sun, Chao ; Chen, Yuan ; Cheng, Guanghui ; Liu, Cheng ; Strååt, Klas ; Kong, Feng ; Zhao, Shengtian ; Bjorkhölm, Magnus ; Xu, Dawei</creator><creatorcontrib>Guo, Yanxia ; Yuan, Xiaotian ; Li, Kailin ; Dai, Mingkai ; Zhang, Lu ; Wu, Yujiao ; Sun, Chao ; Chen, Yuan ; Cheng, Guanghui ; Liu, Cheng ; Strååt, Klas ; Kong, Feng ; Zhao, Shengtian ; Bjorkhölm, Magnus ; Xu, Dawei</creatorcontrib><description>TERT promoter mutations occur in the majority of glioblastoma, bladder cancer (BC), and other malignancies while the ETS family transcription factors GABPA and its partner GABPB1 activate the mutant TERT promoter and telomerase in these tumors. GABPA depletion or the disruption of the GABPA/GABPB1 complex by knocking down GABPB1 was shown to inhibit telomerase, thereby eliminating the tumorigenic potential of glioblastoma cells. GABPA/B1 is thus suggested as a cancer therapeutic target. However, it is unclear about its role in BC. Here we unexpectedly observed that GABPA ablation inhibited TERT expression, but robustly increased proliferation, stem, and invasive phenotypes and cisplatin resistance in BC cells, while its overexpression exhibited opposite effects, and inhibited in vivo metastasizing in a xenograft transplant model. Mechanistically, GABPA directly activates the transcription of FoxA1 and GATA3, key transcription factors driving luminal differentiation of urothelial cells. Consistently, TCGA/GEO dataset analyses show that GABPA expression is correlated positively with luminal while negatively with basal signatures. Luminal tumors express higher GABPA than do basal ones. Lower GABPA expression is associated with the GABPA gene methylation or deletion (especially in basal subtype of BC tumors), and predicted significantly shorter patient survival based on TCGA and our cohort of BC patient analyses. Taken together, GABPA dictates luminal identity of BC cells and inhibits aggressive diseases in BC by promoting cellular differentiation despite its stimulatory effect on telomerase/TERT activation. Given these biological functions and its frequent methylation and/or deletion, GABPA serves as a tumor suppressor rather than oncogenic factor in BC. The GABPA effect on oncogenesis is context-dependent and its targeting for telomerase inhibition in BC may promote disease metastasizing.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-019-0466-7</identifier><identifier>PMID: 31802036</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 45/77 ; 631/67/322 ; 64/60 ; 692/308/2778 ; 96/100 ; 96/44 ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Bladder cancer ; Brain cancer ; Cancer ; Cell Biology ; Cell Cycle Analysis ; Cell differentiation ; Cell proliferation ; Cisplatin ; DNA methylation ; GABPa gene ; GATA-3 protein ; Gene deletion ; Glioblastoma ; Glioblastoma cells ; Invasiveness ; Life Sciences ; Phenotypes ; Stem Cells ; Telomerase ; Therapeutic applications ; Therapeutic targets ; Transcription factors ; Tumor suppressor genes ; Tumorigenesis ; Tumors ; Xenografts</subject><ispartof>Cell death and differentiation, 2020-06, Vol.27 (6), p.1862-1877</ispartof><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2019</rights><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s), under exclusive licence to ADMC Associazione Differenziamento e Morte Cellulare 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-73444b0e84d7f7aceccd279c7726ad4d8eafb1c74fe8dbc2a48e4deaca04222a3</citedby><cites>FETCH-LOGICAL-c536t-73444b0e84d7f7aceccd279c7726ad4d8eafb1c74fe8dbc2a48e4deaca04222a3</cites><orcidid>0000-0003-3141-4524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244562/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7244562/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31802036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:143734119$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Yanxia</creatorcontrib><creatorcontrib>Yuan, Xiaotian</creatorcontrib><creatorcontrib>Li, Kailin</creatorcontrib><creatorcontrib>Dai, Mingkai</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Wu, Yujiao</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Cheng, Guanghui</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Strååt, Klas</creatorcontrib><creatorcontrib>Kong, Feng</creatorcontrib><creatorcontrib>Zhao, Shengtian</creatorcontrib><creatorcontrib>Bjorkhölm, Magnus</creatorcontrib><creatorcontrib>Xu, Dawei</creatorcontrib><title>GABPA is a master regulator of luminal identity and restrains aggressive diseases in bladder cancer</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>TERT promoter mutations occur in the majority of glioblastoma, bladder cancer (BC), and other malignancies while the ETS family transcription factors GABPA and its partner GABPB1 activate the mutant TERT promoter and telomerase in these tumors. GABPA depletion or the disruption of the GABPA/GABPB1 complex by knocking down GABPB1 was shown to inhibit telomerase, thereby eliminating the tumorigenic potential of glioblastoma cells. GABPA/B1 is thus suggested as a cancer therapeutic target. However, it is unclear about its role in BC. Here we unexpectedly observed that GABPA ablation inhibited TERT expression, but robustly increased proliferation, stem, and invasive phenotypes and cisplatin resistance in BC cells, while its overexpression exhibited opposite effects, and inhibited in vivo metastasizing in a xenograft transplant model. Mechanistically, GABPA directly activates the transcription of FoxA1 and GATA3, key transcription factors driving luminal differentiation of urothelial cells. Consistently, TCGA/GEO dataset analyses show that GABPA expression is correlated positively with luminal while negatively with basal signatures. Luminal tumors express higher GABPA than do basal ones. Lower GABPA expression is associated with the GABPA gene methylation or deletion (especially in basal subtype of BC tumors), and predicted significantly shorter patient survival based on TCGA and our cohort of BC patient analyses. Taken together, GABPA dictates luminal identity of BC cells and inhibits aggressive diseases in BC by promoting cellular differentiation despite its stimulatory effect on telomerase/TERT activation. Given these biological functions and its frequent methylation and/or deletion, GABPA serves as a tumor suppressor rather than oncogenic factor in BC. The GABPA effect on oncogenesis is context-dependent and its targeting for telomerase inhibition in BC may promote disease metastasizing.</description><subject>13/1</subject><subject>45/77</subject><subject>631/67/322</subject><subject>64/60</subject><subject>692/308/2778</subject><subject>96/100</subject><subject>96/44</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Bladder cancer</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell differentiation</subject><subject>Cell proliferation</subject><subject>Cisplatin</subject><subject>DNA methylation</subject><subject>GABPa gene</subject><subject>GATA-3 protein</subject><subject>Gene deletion</subject><subject>Glioblastoma</subject><subject>Glioblastoma cells</subject><subject>Invasiveness</subject><subject>Life Sciences</subject><subject>Phenotypes</subject><subject>Stem Cells</subject><subject>Telomerase</subject><subject>Therapeutic applications</subject><subject>Therapeutic targets</subject><subject>Transcription factors</subject><subject>Tumor suppressor genes</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Xenografts</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9Uk1v1TAQtBCIlgc_gAuyxIVLir9iJxekRwUtUiU4wNna2JvgkpcUOynqv2er9ygUCU5ee2fGu6Nh7LkUJ1Lo5nUx0simErKthLG2cg_YsTTOVrUR-iHVuhZVK4w7Yk9KuRRCWNfax-xIy0Yooe0xC2fbt5-2PBUOfAdlwcwzDusIy5z53PNx3aUJRp4iTktabjhMkRBlyZAmIg0DXUq6Rh5TQShYeJp4N0KMJBVgCpifskc9jAWfHc4N-_L-3efT8-ri49mH0-1FFWptl8ppY0wnsDHR9Q4ChhCVa4NzykI0sUHoOxmc6bGJXVBgGjQRIYAwSinQG1btdcsPvFo7f5XTDvKNnyH5w9M3qtAbV0tyaMPe7PHU2WEMtGGG8R7tfmdKX_0wX3unjKmtIoFXB4E8f1_JFL9LJeA4woTzWrzSSkmjtWoI-vIv6OW8ZnKWUDSO0FLZ9v8oUTe6bUhuw-QeFfJcSsb-bmQp_G0w_D4YnoLhb4PhHXFe_LnrHeNXEgigDuZRaxow__7636o_AU8PxTw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Guo, Yanxia</creator><creator>Yuan, Xiaotian</creator><creator>Li, Kailin</creator><creator>Dai, Mingkai</creator><creator>Zhang, Lu</creator><creator>Wu, Yujiao</creator><creator>Sun, Chao</creator><creator>Chen, Yuan</creator><creator>Cheng, Guanghui</creator><creator>Liu, Cheng</creator><creator>Strååt, Klas</creator><creator>Kong, Feng</creator><creator>Zhao, Shengtian</creator><creator>Bjorkhölm, Magnus</creator><creator>Xu, Dawei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-3141-4524</orcidid></search><sort><creationdate>20200601</creationdate><title>GABPA is a master regulator of luminal identity and restrains aggressive diseases in bladder cancer</title><author>Guo, Yanxia ; Yuan, Xiaotian ; Li, Kailin ; Dai, Mingkai ; Zhang, Lu ; Wu, Yujiao ; Sun, Chao ; Chen, Yuan ; Cheng, Guanghui ; Liu, Cheng ; Strååt, Klas ; Kong, Feng ; Zhao, Shengtian ; Bjorkhölm, Magnus ; Xu, Dawei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-73444b0e84d7f7aceccd279c7726ad4d8eafb1c74fe8dbc2a48e4deaca04222a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>45/77</topic><topic>631/67/322</topic><topic>64/60</topic><topic>692/308/2778</topic><topic>96/100</topic><topic>96/44</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Bladder cancer</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell differentiation</topic><topic>Cell proliferation</topic><topic>Cisplatin</topic><topic>DNA methylation</topic><topic>GABPa gene</topic><topic>GATA-3 protein</topic><topic>Gene deletion</topic><topic>Glioblastoma</topic><topic>Glioblastoma cells</topic><topic>Invasiveness</topic><topic>Life Sciences</topic><topic>Phenotypes</topic><topic>Stem Cells</topic><topic>Telomerase</topic><topic>Therapeutic applications</topic><topic>Therapeutic targets</topic><topic>Transcription factors</topic><topic>Tumor suppressor genes</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yanxia</creatorcontrib><creatorcontrib>Yuan, Xiaotian</creatorcontrib><creatorcontrib>Li, Kailin</creatorcontrib><creatorcontrib>Dai, Mingkai</creatorcontrib><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Wu, Yujiao</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Cheng, Guanghui</creatorcontrib><creatorcontrib>Liu, Cheng</creatorcontrib><creatorcontrib>Strååt, Klas</creatorcontrib><creatorcontrib>Kong, Feng</creatorcontrib><creatorcontrib>Zhao, Shengtian</creatorcontrib><creatorcontrib>Bjorkhölm, Magnus</creatorcontrib><creatorcontrib>Xu, Dawei</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yanxia</au><au>Yuan, Xiaotian</au><au>Li, Kailin</au><au>Dai, Mingkai</au><au>Zhang, Lu</au><au>Wu, Yujiao</au><au>Sun, Chao</au><au>Chen, Yuan</au><au>Cheng, Guanghui</au><au>Liu, Cheng</au><au>Strååt, Klas</au><au>Kong, Feng</au><au>Zhao, Shengtian</au><au>Bjorkhölm, Magnus</au><au>Xu, Dawei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GABPA is a master regulator of luminal identity and restrains aggressive diseases in bladder cancer</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>27</volume><issue>6</issue><spage>1862</spage><epage>1877</epage><pages>1862-1877</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>TERT promoter mutations occur in the majority of glioblastoma, bladder cancer (BC), and other malignancies while the ETS family transcription factors GABPA and its partner GABPB1 activate the mutant TERT promoter and telomerase in these tumors. GABPA depletion or the disruption of the GABPA/GABPB1 complex by knocking down GABPB1 was shown to inhibit telomerase, thereby eliminating the tumorigenic potential of glioblastoma cells. GABPA/B1 is thus suggested as a cancer therapeutic target. However, it is unclear about its role in BC. Here we unexpectedly observed that GABPA ablation inhibited TERT expression, but robustly increased proliferation, stem, and invasive phenotypes and cisplatin resistance in BC cells, while its overexpression exhibited opposite effects, and inhibited in vivo metastasizing in a xenograft transplant model. Mechanistically, GABPA directly activates the transcription of FoxA1 and GATA3, key transcription factors driving luminal differentiation of urothelial cells. Consistently, TCGA/GEO dataset analyses show that GABPA expression is correlated positively with luminal while negatively with basal signatures. Luminal tumors express higher GABPA than do basal ones. Lower GABPA expression is associated with the GABPA gene methylation or deletion (especially in basal subtype of BC tumors), and predicted significantly shorter patient survival based on TCGA and our cohort of BC patient analyses. Taken together, GABPA dictates luminal identity of BC cells and inhibits aggressive diseases in BC by promoting cellular differentiation despite its stimulatory effect on telomerase/TERT activation. Given these biological functions and its frequent methylation and/or deletion, GABPA serves as a tumor suppressor rather than oncogenic factor in BC. The GABPA effect on oncogenesis is context-dependent and its targeting for telomerase inhibition in BC may promote disease metastasizing.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31802036</pmid><doi>10.1038/s41418-019-0466-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3141-4524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2020-06, Vol.27 (6), p.1862-1877
issn 1350-9047
1476-5403
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_475140
source Open Access: PubMed Central; Springer Link
subjects 13/1
45/77
631/67/322
64/60
692/308/2778
96/100
96/44
Apoptosis
Biochemistry
Biomedical and Life Sciences
Bladder cancer
Brain cancer
Cancer
Cell Biology
Cell Cycle Analysis
Cell differentiation
Cell proliferation
Cisplatin
DNA methylation
GABPa gene
GATA-3 protein
Gene deletion
Glioblastoma
Glioblastoma cells
Invasiveness
Life Sciences
Phenotypes
Stem Cells
Telomerase
Therapeutic applications
Therapeutic targets
Transcription factors
Tumor suppressor genes
Tumorigenesis
Tumors
Xenografts
title GABPA is a master regulator of luminal identity and restrains aggressive diseases in bladder cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GABPA%20is%20a%20master%20regulator%20of%20luminal%20identity%20and%20restrains%20aggressive%20diseases%20in%20bladder%20cancer&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Guo,%20Yanxia&rft.date=2020-06-01&rft.volume=27&rft.issue=6&rft.spage=1862&rft.epage=1877&rft.pages=1862-1877&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-019-0466-7&rft_dat=%3Cproquest_swepu%3E2475031269%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-73444b0e84d7f7aceccd279c7726ad4d8eafb1c74fe8dbc2a48e4deaca04222a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2405839843&rft_id=info:pmid/31802036&rfr_iscdi=true