Loading…

Latent Semantic Analysis Discriminates Children with Developmental Language Disorder (DLD) from Children with Typical Language Development

Computer based analyses offer a possibility for objective methods to assess semantic-linguistic quality of narratives at the text level. The aim of the present study is to investigate whether a semantic language impairment index (SELIMI) based on latent semantic analysis (LSA) can discriminate betwe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of psycholinguistic research 2019-06, Vol.48 (3), p.683-697
Main Authors: Bååth, Rasmus, Sikström, Sverker, Kalnak, Nelli, Hansson, Kristina, Sahlén, Birgitta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Computer based analyses offer a possibility for objective methods to assess semantic-linguistic quality of narratives at the text level. The aim of the present study is to investigate whether a semantic language impairment index (SELIMI) based on latent semantic analysis (LSA) can discriminate between children with developmental language disorder (DLD) and children with typical language development. Spoken narratives from 54 children with DLD and 54 age matched controls with typical language development were summarized in a semantic representation generated using LSA. A statistical model was trained to discriminate between children with DLD and children with typical language development, given the semantic vector representing each individual child’s narrative. The results show that SELIMI could distinguish between children with DLD and children with typical language development significantly better than chance and thus has a potential to complement traditional analyses focussed on form or on the word level.
ISSN:0090-6905
1573-6555
1573-6555
DOI:10.1007/s10936-018-09625-8