Loading…
Molecular basis of growth hormone daily mRNA and protein synthesis in rats
Daily and seasonal rhythms coordinate the endocrine and metabolic functions. The pituitary gland is the master regulator of several endocrine activities, and its function is classically regulated by endocrine signals from its target glands as well as from the hypothalamus. The growth hormone (GH) pr...
Saved in:
Published in: | Life sciences (1973) 2018-08, Vol.207, p.36-41 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-7060b8dfb66ddb6157273492e3133d4f46e713dcd383ec3fb30ba79ad9a7fa63 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-7060b8dfb66ddb6157273492e3133d4f46e713dcd383ec3fb30ba79ad9a7fa63 |
container_end_page | 41 |
container_issue | |
container_start_page | 36 |
container_title | Life sciences (1973) |
container_volume | 207 |
creator | de Castro Barbosa, T. Salgueiro, R.B. Serrano-Nascimento, C. Amaral, F.G. Cipolla-Neto, J. Nunes, M.T. |
description | Daily and seasonal rhythms coordinate the endocrine and metabolic functions. The pituitary gland is the master regulator of several endocrine activities, and its function is classically regulated by endocrine signals from its target glands as well as from the hypothalamus. The growth hormone (GH) produced and secreted by the anterior pituitary presents a pulsatile secretion throughout the 24-hour cycle. However, the molecular mechanisms regulating the daily pattern of GH secretion are still unclear. Herein we investigated whether circadian GH mRNA and protein synthesis is modulated by acute adjustments in the stability and expression of GH mRNA.
GH mRNA and protein content were evaluated by real-time PCR and Western blotting, respectively, in pituitary gland of rats euthanized every 3 h during a 24-h period at the Zeitgeber times (ZT3 to ZT24). The GH mRNA poly(A) tail length was determined by RACE-PAT assay.
We identified two main peaks of GH mRNA level in the pituitary gland of rats; one in the middle of the light-cycle and another in the middle of the dark-cycle. The latter was associated with an increase in pituitary GH protein content. Interestingly, an increment in the poly(A) tail length of the GH transcript was observed in association to reduced migration rate of the GH transcript and increased mRNA content in the dark-cycle period.
Our findings provide evidence that changes in the GH mRNA poly(A) length may underlie the circadian pattern of GH mRNA and protein levels in the pituitary gland of rats. |
doi_str_mv | 10.1016/j.lfs.2018.05.043 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_488091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024320518303114</els_id><sourcerecordid>2047304033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-7060b8dfb66ddb6157273492e3133d4f46e713dcd383ec3fb30ba79ad9a7fa63</originalsourceid><addsrcrecordid>eNp9kUtv1DAURi0EokPhB7BBltiwSbh-xE7EqqrKSwUk1L3l2DeMhyQe7IRq_j0ezdAFC1Z-6Hyfrn0IecmgZsDU2109DrnmwNoamhqkeEQ2rNVdBUqwx2QDwGUlODQX5FnOOwBoGi2ekgvetZK3SmzI5y9xRLeONtHe5pBpHOiPFO-XLd3GNMUZqbdhPNDp-9cramdP9ykuGGaaD_OyxWOkHJJd8nPyZLBjxhfn9ZLcvb-5u_5Y3X778On66rZyUvGl0qCgb_3QK-V9r1ijuRay4yiYEF4OUqFmwjsvWoFODL2A3urO-s7qwSpxSapTbb7H_dqbfQqTTQcTbTDnq59lh0a2LXSs8G9OfBn814p5MVPIDsfRzhjXbDhILUCCEAV9_Q-6i2uay2MMZyC7hjWNLBQ7US7FnBMODyMwMEcvZmeKF3P0YqAxxUvJvDo3r_2E_iHxV0QB3p0ALD_3O2Ay2QWcHfqQ0C3Gx_Cf-j_X6Z1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104951554</pqid></control><display><type>article</type><title>Molecular basis of growth hormone daily mRNA and protein synthesis in rats</title><source>Elsevier</source><creator>de Castro Barbosa, T. ; Salgueiro, R.B. ; Serrano-Nascimento, C. ; Amaral, F.G. ; Cipolla-Neto, J. ; Nunes, M.T.</creator><creatorcontrib>de Castro Barbosa, T. ; Salgueiro, R.B. ; Serrano-Nascimento, C. ; Amaral, F.G. ; Cipolla-Neto, J. ; Nunes, M.T.</creatorcontrib><description>Daily and seasonal rhythms coordinate the endocrine and metabolic functions. The pituitary gland is the master regulator of several endocrine activities, and its function is classically regulated by endocrine signals from its target glands as well as from the hypothalamus. The growth hormone (GH) produced and secreted by the anterior pituitary presents a pulsatile secretion throughout the 24-hour cycle. However, the molecular mechanisms regulating the daily pattern of GH secretion are still unclear. Herein we investigated whether circadian GH mRNA and protein synthesis is modulated by acute adjustments in the stability and expression of GH mRNA.
GH mRNA and protein content were evaluated by real-time PCR and Western blotting, respectively, in pituitary gland of rats euthanized every 3 h during a 24-h period at the Zeitgeber times (ZT3 to ZT24). The GH mRNA poly(A) tail length was determined by RACE-PAT assay.
We identified two main peaks of GH mRNA level in the pituitary gland of rats; one in the middle of the light-cycle and another in the middle of the dark-cycle. The latter was associated with an increase in pituitary GH protein content. Interestingly, an increment in the poly(A) tail length of the GH transcript was observed in association to reduced migration rate of the GH transcript and increased mRNA content in the dark-cycle period.
Our findings provide evidence that changes in the GH mRNA poly(A) length may underlie the circadian pattern of GH mRNA and protein levels in the pituitary gland of rats.</description><identifier>ISSN: 0024-3205</identifier><identifier>EISSN: 1879-0631</identifier><identifier>DOI: 10.1016/j.lfs.2018.05.043</identifier><identifier>PMID: 29842863</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Brain ; Circadian rhythm ; Gene expression ; Growth hormone ; Hypothalamus ; Molecules ; Pituitary gland ; Poly(A) tail ; Polymerase chain reaction ; Protein synthesis ; Proteins ; Ribonucleic acid ; RNA ; Rodents ; Zeitgeber</subject><ispartof>Life sciences (1973), 2018-08, Vol.207, p.36-41</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Aug 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-7060b8dfb66ddb6157273492e3133d4f46e713dcd383ec3fb30ba79ad9a7fa63</citedby><cites>FETCH-LOGICAL-c462t-7060b8dfb66ddb6157273492e3133d4f46e713dcd383ec3fb30ba79ad9a7fa63</cites><orcidid>0000-0002-3040-9873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29842863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:138794876$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>de Castro Barbosa, T.</creatorcontrib><creatorcontrib>Salgueiro, R.B.</creatorcontrib><creatorcontrib>Serrano-Nascimento, C.</creatorcontrib><creatorcontrib>Amaral, F.G.</creatorcontrib><creatorcontrib>Cipolla-Neto, J.</creatorcontrib><creatorcontrib>Nunes, M.T.</creatorcontrib><title>Molecular basis of growth hormone daily mRNA and protein synthesis in rats</title><title>Life sciences (1973)</title><addtitle>Life Sci</addtitle><description>Daily and seasonal rhythms coordinate the endocrine and metabolic functions. The pituitary gland is the master regulator of several endocrine activities, and its function is classically regulated by endocrine signals from its target glands as well as from the hypothalamus. The growth hormone (GH) produced and secreted by the anterior pituitary presents a pulsatile secretion throughout the 24-hour cycle. However, the molecular mechanisms regulating the daily pattern of GH secretion are still unclear. Herein we investigated whether circadian GH mRNA and protein synthesis is modulated by acute adjustments in the stability and expression of GH mRNA.
GH mRNA and protein content were evaluated by real-time PCR and Western blotting, respectively, in pituitary gland of rats euthanized every 3 h during a 24-h period at the Zeitgeber times (ZT3 to ZT24). The GH mRNA poly(A) tail length was determined by RACE-PAT assay.
We identified two main peaks of GH mRNA level in the pituitary gland of rats; one in the middle of the light-cycle and another in the middle of the dark-cycle. The latter was associated with an increase in pituitary GH protein content. Interestingly, an increment in the poly(A) tail length of the GH transcript was observed in association to reduced migration rate of the GH transcript and increased mRNA content in the dark-cycle period.
Our findings provide evidence that changes in the GH mRNA poly(A) length may underlie the circadian pattern of GH mRNA and protein levels in the pituitary gland of rats.</description><subject>Brain</subject><subject>Circadian rhythm</subject><subject>Gene expression</subject><subject>Growth hormone</subject><subject>Hypothalamus</subject><subject>Molecules</subject><subject>Pituitary gland</subject><subject>Poly(A) tail</subject><subject>Polymerase chain reaction</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Zeitgeber</subject><issn>0024-3205</issn><issn>1879-0631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAURi0EokPhB7BBltiwSbh-xE7EqqrKSwUk1L3l2DeMhyQe7IRq_j0ezdAFC1Z-6Hyfrn0IecmgZsDU2109DrnmwNoamhqkeEQ2rNVdBUqwx2QDwGUlODQX5FnOOwBoGi2ekgvetZK3SmzI5y9xRLeONtHe5pBpHOiPFO-XLd3GNMUZqbdhPNDp-9cramdP9ykuGGaaD_OyxWOkHJJd8nPyZLBjxhfn9ZLcvb-5u_5Y3X778On66rZyUvGl0qCgb_3QK-V9r1ijuRay4yiYEF4OUqFmwjsvWoFODL2A3urO-s7qwSpxSapTbb7H_dqbfQqTTQcTbTDnq59lh0a2LXSs8G9OfBn814p5MVPIDsfRzhjXbDhILUCCEAV9_Q-6i2uay2MMZyC7hjWNLBQ7US7FnBMODyMwMEcvZmeKF3P0YqAxxUvJvDo3r_2E_iHxV0QB3p0ALD_3O2Ay2QWcHfqQ0C3Gx_Cf-j_X6Z1A</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>de Castro Barbosa, T.</creator><creator>Salgueiro, R.B.</creator><creator>Serrano-Nascimento, C.</creator><creator>Amaral, F.G.</creator><creator>Cipolla-Neto, J.</creator><creator>Nunes, M.T.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-3040-9873</orcidid></search><sort><creationdate>20180815</creationdate><title>Molecular basis of growth hormone daily mRNA and protein synthesis in rats</title><author>de Castro Barbosa, T. ; Salgueiro, R.B. ; Serrano-Nascimento, C. ; Amaral, F.G. ; Cipolla-Neto, J. ; Nunes, M.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-7060b8dfb66ddb6157273492e3133d4f46e713dcd383ec3fb30ba79ad9a7fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brain</topic><topic>Circadian rhythm</topic><topic>Gene expression</topic><topic>Growth hormone</topic><topic>Hypothalamus</topic><topic>Molecules</topic><topic>Pituitary gland</topic><topic>Poly(A) tail</topic><topic>Polymerase chain reaction</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Zeitgeber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Castro Barbosa, T.</creatorcontrib><creatorcontrib>Salgueiro, R.B.</creatorcontrib><creatorcontrib>Serrano-Nascimento, C.</creatorcontrib><creatorcontrib>Amaral, F.G.</creatorcontrib><creatorcontrib>Cipolla-Neto, J.</creatorcontrib><creatorcontrib>Nunes, M.T.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Life sciences (1973)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Castro Barbosa, T.</au><au>Salgueiro, R.B.</au><au>Serrano-Nascimento, C.</au><au>Amaral, F.G.</au><au>Cipolla-Neto, J.</au><au>Nunes, M.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis of growth hormone daily mRNA and protein synthesis in rats</atitle><jtitle>Life sciences (1973)</jtitle><addtitle>Life Sci</addtitle><date>2018-08-15</date><risdate>2018</risdate><volume>207</volume><spage>36</spage><epage>41</epage><pages>36-41</pages><issn>0024-3205</issn><eissn>1879-0631</eissn><abstract>Daily and seasonal rhythms coordinate the endocrine and metabolic functions. The pituitary gland is the master regulator of several endocrine activities, and its function is classically regulated by endocrine signals from its target glands as well as from the hypothalamus. The growth hormone (GH) produced and secreted by the anterior pituitary presents a pulsatile secretion throughout the 24-hour cycle. However, the molecular mechanisms regulating the daily pattern of GH secretion are still unclear. Herein we investigated whether circadian GH mRNA and protein synthesis is modulated by acute adjustments in the stability and expression of GH mRNA.
GH mRNA and protein content were evaluated by real-time PCR and Western blotting, respectively, in pituitary gland of rats euthanized every 3 h during a 24-h period at the Zeitgeber times (ZT3 to ZT24). The GH mRNA poly(A) tail length was determined by RACE-PAT assay.
We identified two main peaks of GH mRNA level in the pituitary gland of rats; one in the middle of the light-cycle and another in the middle of the dark-cycle. The latter was associated with an increase in pituitary GH protein content. Interestingly, an increment in the poly(A) tail length of the GH transcript was observed in association to reduced migration rate of the GH transcript and increased mRNA content in the dark-cycle period.
Our findings provide evidence that changes in the GH mRNA poly(A) length may underlie the circadian pattern of GH mRNA and protein levels in the pituitary gland of rats.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>29842863</pmid><doi>10.1016/j.lfs.2018.05.043</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3040-9873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3205 |
ispartof | Life sciences (1973), 2018-08, Vol.207, p.36-41 |
issn | 0024-3205 1879-0631 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_488091 |
source | Elsevier |
subjects | Brain Circadian rhythm Gene expression Growth hormone Hypothalamus Molecules Pituitary gland Poly(A) tail Polymerase chain reaction Protein synthesis Proteins Ribonucleic acid RNA Rodents Zeitgeber |
title | Molecular basis of growth hormone daily mRNA and protein synthesis in rats |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20of%20growth%20hormone%20daily%20mRNA%20and%20protein%20synthesis%20in%20rats&rft.jtitle=Life%20sciences%20(1973)&rft.au=de%20Castro%20Barbosa,%20T.&rft.date=2018-08-15&rft.volume=207&rft.spage=36&rft.epage=41&rft.pages=36-41&rft.issn=0024-3205&rft.eissn=1879-0631&rft_id=info:doi/10.1016/j.lfs.2018.05.043&rft_dat=%3Cproquest_swepu%3E2047304033%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-7060b8dfb66ddb6157273492e3133d4f46e713dcd383ec3fb30ba79ad9a7fa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2104951554&rft_id=info:pmid/29842863&rfr_iscdi=true |