Loading…

NADPH-dependent and -independent disulfide reductase systems

Over the past seven decades, research on autotrophic and heterotrophic model organisms has defined how the flow of electrons (“reducing power”) from high-energy inorganic sources, through biological systems, to low-energy inorganic products like water, powers all of Life's processes. Universall...

Full description

Saved in:
Bibliographic Details
Published in:Free radical biology & medicine 2018-11, Vol.127, p.248-261
Main Authors: Miller, Colin G., Holmgren, Arne, Arnér, Elias S.J., Schmidt, Edward E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c529t-2a055c26ef496aa81254408c24a5926e846b29c02099e34e0a662eebc7af3cae3
cites cdi_FETCH-LOGICAL-c529t-2a055c26ef496aa81254408c24a5926e846b29c02099e34e0a662eebc7af3cae3
container_end_page 261
container_issue
container_start_page 248
container_title Free radical biology & medicine
container_volume 127
creator Miller, Colin G.
Holmgren, Arne
Arnér, Elias S.J.
Schmidt, Edward E.
description Over the past seven decades, research on autotrophic and heterotrophic model organisms has defined how the flow of electrons (“reducing power”) from high-energy inorganic sources, through biological systems, to low-energy inorganic products like water, powers all of Life's processes. Universally, an initial major biological recipient of these electrons is nicotinamide adenine dinucleotide-phosphate, which thereby transits from an oxidized state (NADP+) to a reduced state (NADPH). A portion of this reducing power is then distributed via the cellular NADPH-dependent disulfide reductase systems as sequential reductions of disulfide bonds. Along the disulfide reduction pathways, some enzymes have active sites that use the selenium-containing amino acid, selenocysteine, in place of the common but less reactive sulfur-containing cysteine. In particular, the mammalian/metazoan thioredoxin systems are usually selenium-dependent as, across metazoan phyla, most thioredoxin reductases are selenoproteins. Among the roles of the NADPH-dependent disulfide reductase systems, the most universal is that they provide the reducing power for the production of DNA precursors by ribonucleotide reductase (RNR). Some studies, however, have uncovered examples of NADPH-independent disulfide reductase systems that can also support RNR. These systems are summarized here and their implications are discussed. [Display omitted] •All species generate NADPH intracellularly, which fuels disulfide reductase systems.•Mammals have an NADPH-independent disulfide reductase system fueled by methionine.•Transsulfuration reversal allows Met-fueled reductase system yet makes Met essential.•Transsulfuration reversal and a Se-dependent TrxR family co-evolved with metazoans.•Metazoan selenoprotein TrxR1 and transsulfuration each support redox signaling.
doi_str_mv 10.1016/j.freeradbiomed.2018.03.051
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_489358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089158491830162X</els_id><sourcerecordid>2021322565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-2a055c26ef496aa81254408c24a5926e846b29c02099e34e0a662eebc7af3cae3</originalsourceid><addsrcrecordid>eNqNkVtPGzEQha2qqKS0f6GKxEtfdhlfY6uoEuIuIehD-2w59iw43eym9i6If1-jhEveeLI1850z9hxC9inUFKg6WNRNQkwuzGO_xFAzoLoGXoOkH8iE6hmvhDTqI5mANrSSWphd8jnnBQAIyfUnssuMAgOMTcjh9dHJr4sq4Aq7gN0wdV2YVrF7LYSYx7aJAacJw-gHl3GaH_OAy_yF7DSuzfh1c-6RP2env48vqqub88vjo6vKS2aGijmQ0jOFjTDKOU2ZFAK0Z8JJU8paqDkzHhgYg1wgOKUY4tzPXMO9Q75HqrVvfsDVOLerFJcuPdreRbsp_S03tEIbLnXhf6750ikb8uUbybVbsu1OF-_sbX9vFVVyBrQYfN8YpP7fiHmwy5g9tq3rsB-zZcAoZ0wqWdAfa9SnPueEzcsYCvYpL7uwW3nZp7wscFvyKupvb1_6on0OqACnawDLfu8jJpt9xM5jiAn9YEMf3zXoP8g2r7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021322565</pqid></control><display><type>article</type><title>NADPH-dependent and -independent disulfide reductase systems</title><source>ScienceDirect Freedom Collection</source><creator>Miller, Colin G. ; Holmgren, Arne ; Arnér, Elias S.J. ; Schmidt, Edward E.</creator><creatorcontrib>Miller, Colin G. ; Holmgren, Arne ; Arnér, Elias S.J. ; Schmidt, Edward E.</creatorcontrib><description>Over the past seven decades, research on autotrophic and heterotrophic model organisms has defined how the flow of electrons (“reducing power”) from high-energy inorganic sources, through biological systems, to low-energy inorganic products like water, powers all of Life's processes. Universally, an initial major biological recipient of these electrons is nicotinamide adenine dinucleotide-phosphate, which thereby transits from an oxidized state (NADP+) to a reduced state (NADPH). A portion of this reducing power is then distributed via the cellular NADPH-dependent disulfide reductase systems as sequential reductions of disulfide bonds. Along the disulfide reduction pathways, some enzymes have active sites that use the selenium-containing amino acid, selenocysteine, in place of the common but less reactive sulfur-containing cysteine. In particular, the mammalian/metazoan thioredoxin systems are usually selenium-dependent as, across metazoan phyla, most thioredoxin reductases are selenoproteins. Among the roles of the NADPH-dependent disulfide reductase systems, the most universal is that they provide the reducing power for the production of DNA precursors by ribonucleotide reductase (RNR). Some studies, however, have uncovered examples of NADPH-independent disulfide reductase systems that can also support RNR. These systems are summarized here and their implications are discussed. [Display omitted] •All species generate NADPH intracellularly, which fuels disulfide reductase systems.•Mammals have an NADPH-independent disulfide reductase system fueled by methionine.•Transsulfuration reversal allows Met-fueled reductase system yet makes Met essential.•Transsulfuration reversal and a Se-dependent TrxR family co-evolved with metazoans.•Metazoan selenoprotein TrxR1 and transsulfuration each support redox signaling.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2018.03.051</identifier><identifier>PMID: 29609022</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cysteine ; Glutathione reductase ; Methionine cycle ; NADPH ; Ribonucleotide reductase ; Sulfur amino acid ; Thioredoxin reductase ; Transsulfuration</subject><ispartof>Free radical biology &amp; medicine, 2018-11, Vol.127, p.248-261</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-2a055c26ef496aa81254408c24a5926e846b29c02099e34e0a662eebc7af3cae3</citedby><cites>FETCH-LOGICAL-c529t-2a055c26ef496aa81254408c24a5926e846b29c02099e34e0a662eebc7af3cae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29609022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:139270698$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, Colin G.</creatorcontrib><creatorcontrib>Holmgren, Arne</creatorcontrib><creatorcontrib>Arnér, Elias S.J.</creatorcontrib><creatorcontrib>Schmidt, Edward E.</creatorcontrib><title>NADPH-dependent and -independent disulfide reductase systems</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Over the past seven decades, research on autotrophic and heterotrophic model organisms has defined how the flow of electrons (“reducing power”) from high-energy inorganic sources, through biological systems, to low-energy inorganic products like water, powers all of Life's processes. Universally, an initial major biological recipient of these electrons is nicotinamide adenine dinucleotide-phosphate, which thereby transits from an oxidized state (NADP+) to a reduced state (NADPH). A portion of this reducing power is then distributed via the cellular NADPH-dependent disulfide reductase systems as sequential reductions of disulfide bonds. Along the disulfide reduction pathways, some enzymes have active sites that use the selenium-containing amino acid, selenocysteine, in place of the common but less reactive sulfur-containing cysteine. In particular, the mammalian/metazoan thioredoxin systems are usually selenium-dependent as, across metazoan phyla, most thioredoxin reductases are selenoproteins. Among the roles of the NADPH-dependent disulfide reductase systems, the most universal is that they provide the reducing power for the production of DNA precursors by ribonucleotide reductase (RNR). Some studies, however, have uncovered examples of NADPH-independent disulfide reductase systems that can also support RNR. These systems are summarized here and their implications are discussed. [Display omitted] •All species generate NADPH intracellularly, which fuels disulfide reductase systems.•Mammals have an NADPH-independent disulfide reductase system fueled by methionine.•Transsulfuration reversal allows Met-fueled reductase system yet makes Met essential.•Transsulfuration reversal and a Se-dependent TrxR family co-evolved with metazoans.•Metazoan selenoprotein TrxR1 and transsulfuration each support redox signaling.</description><subject>Cysteine</subject><subject>Glutathione reductase</subject><subject>Methionine cycle</subject><subject>NADPH</subject><subject>Ribonucleotide reductase</subject><subject>Sulfur amino acid</subject><subject>Thioredoxin reductase</subject><subject>Transsulfuration</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkVtPGzEQha2qqKS0f6GKxEtfdhlfY6uoEuIuIehD-2w59iw43eym9i6If1-jhEveeLI1850z9hxC9inUFKg6WNRNQkwuzGO_xFAzoLoGXoOkH8iE6hmvhDTqI5mANrSSWphd8jnnBQAIyfUnssuMAgOMTcjh9dHJr4sq4Aq7gN0wdV2YVrF7LYSYx7aJAacJw-gHl3GaH_OAy_yF7DSuzfh1c-6RP2env48vqqub88vjo6vKS2aGijmQ0jOFjTDKOU2ZFAK0Z8JJU8paqDkzHhgYg1wgOKUY4tzPXMO9Q75HqrVvfsDVOLerFJcuPdreRbsp_S03tEIbLnXhf6750ikb8uUbybVbsu1OF-_sbX9vFVVyBrQYfN8YpP7fiHmwy5g9tq3rsB-zZcAoZ0wqWdAfa9SnPueEzcsYCvYpL7uwW3nZp7wscFvyKupvb1_6on0OqACnawDLfu8jJpt9xM5jiAn9YEMf3zXoP8g2r7Y</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Miller, Colin G.</creator><creator>Holmgren, Arne</creator><creator>Arnér, Elias S.J.</creator><creator>Schmidt, Edward E.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20181101</creationdate><title>NADPH-dependent and -independent disulfide reductase systems</title><author>Miller, Colin G. ; Holmgren, Arne ; Arnér, Elias S.J. ; Schmidt, Edward E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-2a055c26ef496aa81254408c24a5926e846b29c02099e34e0a662eebc7af3cae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cysteine</topic><topic>Glutathione reductase</topic><topic>Methionine cycle</topic><topic>NADPH</topic><topic>Ribonucleotide reductase</topic><topic>Sulfur amino acid</topic><topic>Thioredoxin reductase</topic><topic>Transsulfuration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Colin G.</creatorcontrib><creatorcontrib>Holmgren, Arne</creatorcontrib><creatorcontrib>Arnér, Elias S.J.</creatorcontrib><creatorcontrib>Schmidt, Edward E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Colin G.</au><au>Holmgren, Arne</au><au>Arnér, Elias S.J.</au><au>Schmidt, Edward E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NADPH-dependent and -independent disulfide reductase systems</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>127</volume><spage>248</spage><epage>261</epage><pages>248-261</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Over the past seven decades, research on autotrophic and heterotrophic model organisms has defined how the flow of electrons (“reducing power”) from high-energy inorganic sources, through biological systems, to low-energy inorganic products like water, powers all of Life's processes. Universally, an initial major biological recipient of these electrons is nicotinamide adenine dinucleotide-phosphate, which thereby transits from an oxidized state (NADP+) to a reduced state (NADPH). A portion of this reducing power is then distributed via the cellular NADPH-dependent disulfide reductase systems as sequential reductions of disulfide bonds. Along the disulfide reduction pathways, some enzymes have active sites that use the selenium-containing amino acid, selenocysteine, in place of the common but less reactive sulfur-containing cysteine. In particular, the mammalian/metazoan thioredoxin systems are usually selenium-dependent as, across metazoan phyla, most thioredoxin reductases are selenoproteins. Among the roles of the NADPH-dependent disulfide reductase systems, the most universal is that they provide the reducing power for the production of DNA precursors by ribonucleotide reductase (RNR). Some studies, however, have uncovered examples of NADPH-independent disulfide reductase systems that can also support RNR. These systems are summarized here and their implications are discussed. [Display omitted] •All species generate NADPH intracellularly, which fuels disulfide reductase systems.•Mammals have an NADPH-independent disulfide reductase system fueled by methionine.•Transsulfuration reversal allows Met-fueled reductase system yet makes Met essential.•Transsulfuration reversal and a Se-dependent TrxR family co-evolved with metazoans.•Metazoan selenoprotein TrxR1 and transsulfuration each support redox signaling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29609022</pmid><doi>10.1016/j.freeradbiomed.2018.03.051</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2018-11, Vol.127, p.248-261
issn 0891-5849
1873-4596
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_489358
source ScienceDirect Freedom Collection
subjects Cysteine
Glutathione reductase
Methionine cycle
NADPH
Ribonucleotide reductase
Sulfur amino acid
Thioredoxin reductase
Transsulfuration
title NADPH-dependent and -independent disulfide reductase systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NADPH-dependent%20and%20-independent%20disulfide%20reductase%20systems&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Miller,%20Colin%20G.&rft.date=2018-11-01&rft.volume=127&rft.spage=248&rft.epage=261&rft.pages=248-261&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2018.03.051&rft_dat=%3Cproquest_swepu%3E2021322565%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-2a055c26ef496aa81254408c24a5926e846b29c02099e34e0a662eebc7af3cae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2021322565&rft_id=info:pmid/29609022&rfr_iscdi=true