Loading…

Modelling breast cancer tumour growth for a stable disease population

Statistical models of breast cancer tumour progression have been used to further our knowledge of the natural history of breast cancer, to evaluate mammography screening in terms of mortality, to estimate overdiagnosis, and to estimate the impact of lead-time bias when comparing survival times betwe...

Full description

Saved in:
Bibliographic Details
Published in:Statistical methods in medical research 2019-03, Vol.28 (3), p.681-702
Main Authors: Isheden, Gabriel, Humphreys, Keith
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Statistical models of breast cancer tumour progression have been used to further our knowledge of the natural history of breast cancer, to evaluate mammography screening in terms of mortality, to estimate overdiagnosis, and to estimate the impact of lead-time bias when comparing survival times between screen detected cancers and cancers found outside of screening programs. Multi-state Markov models have been widely used, but several research groups have proposed other modelling frameworks based on specifying an underlying biological continuous tumour growth process. These continuous models offer some advantages over multi-state models and have been used, for example, to quantify screening sensitivity in terms of mammographic density, and to quantify the effect of body size covariates on tumour growth and time to symptomatic detection. As of yet, however, the continuous tumour growth models are not sufficiently developed and require extensive computing to obtain parameter estimates. In this article, we provide a detailed description of the underlying assumptions of the continuous tumour growth model, derive new theoretical results for the model, and show how these results may help the development of this modelling framework. In illustrating the approach, we develop a model for mammography screening sensitivity, using a sample of 1901 post-menopausal women diagnosed with invasive breast cancer.
ISSN:0962-2802
1477-0334
DOI:10.1177/0962280217734583