Loading…

novel protein quality control mechanism contributes to heat shock resistance of worldwide‐distributed Pseudomonas aeruginosa clone C strains

Pseudomonas aeruginosa is a highly successful nosocomial pathogen capable of causing a wide variety of infections with clone C strains most prevalent worldwide. In this study, we initially characterize a molecular mechanism of survival unique to clone C strains. We identified a P. aeruginosa clone C...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology 2015-11, Vol.17 (11), p.4511-4526
Main Authors: Lee, Changhan, Wigren, Edvard, Trček, Janja, Peters, Verena, Kim, Jihong, Hasni, Muhammad Sharif, Nimtz, Manfred, Lindqvist, Ylva, Park, Chankyu, Curth, Ute, Lünsdorf, Heinrich, Römling, Ute
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4526
container_issue 11
container_start_page 4511
container_title Environmental microbiology
container_volume 17
creator Lee, Changhan
Wigren, Edvard
Trček, Janja
Peters, Verena
Kim, Jihong
Hasni, Muhammad Sharif
Nimtz, Manfred
Lindqvist, Ylva
Park, Chankyu
Curth, Ute
Lünsdorf, Heinrich
Römling, Ute
description Pseudomonas aeruginosa is a highly successful nosocomial pathogen capable of causing a wide variety of infections with clone C strains most prevalent worldwide. In this study, we initially characterize a molecular mechanism of survival unique to clone C strains. We identified a P. aeruginosa clone C‐specific genomic island (PACGI‐1) that contains the highly expressed small heat shock protein sHsp20c, the founding member of a novel subclass of class B bacterial small heat shock proteins. sHsp20c and adjacent gene products are involved in resistance against heat shock. Heat stable sHsp20c is unconventionally expressed in stationary phase in a wide temperature range from 20 to 42°C. Purified sHsp20c has characteristic features of small heat shock protein class B as it is monodisperse, forms sphere‐like 24‐meric oligomers and exhibits significant chaperone activity. As the P. aeruginosa clone C population is significantly more heat shock resistant than genetically unrelated P. aeruginosa strains without sHsp20c, the horizontally acquired shsp20c operon might contribute to the survival of worldwide‐distributed clone C strains.
doi_str_mv 10.1111/1462-2920.12915
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_513210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3883966621</sourcerecordid><originalsourceid>FETCH-LOGICAL-f5795-dd8fd1757416778f7de33e70d4b3a6a0c9c1c0b199500ff288f1fba30e89df2d3</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEoqWwZgeW2LAJ-CeOkyUalVJpgEpQkLqxnPi6404ST-OEYXY8AeIZeRLuNNOphISEN76-_o5lH58kecroK4bjNctynvKS45KXTN5LDved-_ua8YPkUYxXlDIlFH2YHPCcsoxTdZj87MI3aMiqDwP4jlyPpvHDhtShG_rQkBbqhel8bKeOr8YBIhkCWYAZSFyEekl6iD4OpquBBEfWoW_s2lv4_eOXxf6kseQswmhDGzoTiYF-vPRdiIbUTeiAzAiCxnfxcfLAmSbCk918lJy_Pf48e5fOP56czt7MUydVKVNrC2eZkipjuVKFUxaEAEVtVgmTG1qXNatpxcpSUuocLwrHXGUEhaK0jltxlKTTuXENq7HSq963pt_oYLzetZZYgZZMcEaRL__Jo3f2TnQrRJ3MJMpR-3LSIng9Qhx062MNTWM6CGPU-A6RKZ7R8j_QLMtzIXiB6Iu_0Ksw9h2ahpQoSppTIZF6tqPGqgW7v_dtABCQE7D2DWz2-4zqbb70NkF6myZ9ky99_P70prgzEL8Yvu91pl_qHEMm9dcPJ_qCyZmaf7nQZ8g_n3hngjaXvY_6_BOnLMdQolGiEH8AapzetA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738906035</pqid></control><display><type>article</type><title>novel protein quality control mechanism contributes to heat shock resistance of worldwide‐distributed Pseudomonas aeruginosa clone C strains</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Lee, Changhan ; Wigren, Edvard ; Trček, Janja ; Peters, Verena ; Kim, Jihong ; Hasni, Muhammad Sharif ; Nimtz, Manfred ; Lindqvist, Ylva ; Park, Chankyu ; Curth, Ute ; Lünsdorf, Heinrich ; Römling, Ute</creator><creatorcontrib>Lee, Changhan ; Wigren, Edvard ; Trček, Janja ; Peters, Verena ; Kim, Jihong ; Hasni, Muhammad Sharif ; Nimtz, Manfred ; Lindqvist, Ylva ; Park, Chankyu ; Curth, Ute ; Lünsdorf, Heinrich ; Römling, Ute</creatorcontrib><description>Pseudomonas aeruginosa is a highly successful nosocomial pathogen capable of causing a wide variety of infections with clone C strains most prevalent worldwide. In this study, we initially characterize a molecular mechanism of survival unique to clone C strains. We identified a P. aeruginosa clone C‐specific genomic island (PACGI‐1) that contains the highly expressed small heat shock protein sHsp20c, the founding member of a novel subclass of class B bacterial small heat shock proteins. sHsp20c and adjacent gene products are involved in resistance against heat shock. Heat stable sHsp20c is unconventionally expressed in stationary phase in a wide temperature range from 20 to 42°C. Purified sHsp20c has characteristic features of small heat shock protein class B as it is monodisperse, forms sphere‐like 24‐meric oligomers and exhibits significant chaperone activity. As the P. aeruginosa clone C population is significantly more heat shock resistant than genetically unrelated P. aeruginosa strains without sHsp20c, the horizontally acquired shsp20c operon might contribute to the survival of worldwide‐distributed clone C strains.</description><identifier>ISSN: 1462-2912</identifier><identifier>ISSN: 1462-2920</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.12915</identifier><identifier>PMID: 26014207</identifier><language>eng</language><publisher>England: Blackwell Science</publisher><subject>Amino Acid Sequence ; Base Sequence ; cross infection ; Cross Infection - microbiology ; DNA, Bacterial - genetics ; genomic islands ; Genomic Islands - genetics ; heat shock proteins ; heat stability ; Heat-Shock Proteins - genetics ; Heat-Shock Response - physiology ; Hot Temperature ; Medicin och hälsovetenskap ; Molecular Sequence Data ; operon ; pathogens ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - classification ; Pseudomonas aeruginosa - genetics ; Pseudomonas aeruginosa - metabolism ; quality control ; Sequence Analysis, DNA ; temperature</subject><ispartof>Environmental microbiology, 2015-11, Vol.17 (11), p.4511-4526</ispartof><rights>2015 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>2015 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2015 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26014207$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:132545513$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Changhan</creatorcontrib><creatorcontrib>Wigren, Edvard</creatorcontrib><creatorcontrib>Trček, Janja</creatorcontrib><creatorcontrib>Peters, Verena</creatorcontrib><creatorcontrib>Kim, Jihong</creatorcontrib><creatorcontrib>Hasni, Muhammad Sharif</creatorcontrib><creatorcontrib>Nimtz, Manfred</creatorcontrib><creatorcontrib>Lindqvist, Ylva</creatorcontrib><creatorcontrib>Park, Chankyu</creatorcontrib><creatorcontrib>Curth, Ute</creatorcontrib><creatorcontrib>Lünsdorf, Heinrich</creatorcontrib><creatorcontrib>Römling, Ute</creatorcontrib><title>novel protein quality control mechanism contributes to heat shock resistance of worldwide‐distributed Pseudomonas aeruginosa clone C strains</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Pseudomonas aeruginosa is a highly successful nosocomial pathogen capable of causing a wide variety of infections with clone C strains most prevalent worldwide. In this study, we initially characterize a molecular mechanism of survival unique to clone C strains. We identified a P. aeruginosa clone C‐specific genomic island (PACGI‐1) that contains the highly expressed small heat shock protein sHsp20c, the founding member of a novel subclass of class B bacterial small heat shock proteins. sHsp20c and adjacent gene products are involved in resistance against heat shock. Heat stable sHsp20c is unconventionally expressed in stationary phase in a wide temperature range from 20 to 42°C. Purified sHsp20c has characteristic features of small heat shock protein class B as it is monodisperse, forms sphere‐like 24‐meric oligomers and exhibits significant chaperone activity. As the P. aeruginosa clone C population is significantly more heat shock resistant than genetically unrelated P. aeruginosa strains without sHsp20c, the horizontally acquired shsp20c operon might contribute to the survival of worldwide‐distributed clone C strains.</description><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>cross infection</subject><subject>Cross Infection - microbiology</subject><subject>DNA, Bacterial - genetics</subject><subject>genomic islands</subject><subject>Genomic Islands - genetics</subject><subject>heat shock proteins</subject><subject>heat stability</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Response - physiology</subject><subject>Hot Temperature</subject><subject>Medicin och hälsovetenskap</subject><subject>Molecular Sequence Data</subject><subject>operon</subject><subject>pathogens</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - classification</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>quality control</subject><subject>Sequence Analysis, DNA</subject><subject>temperature</subject><issn>1462-2912</issn><issn>1462-2920</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNks1u1DAUhSMEoqWwZgeW2LAJ-CeOkyUalVJpgEpQkLqxnPi6404ST-OEYXY8AeIZeRLuNNOphISEN76-_o5lH58kecroK4bjNctynvKS45KXTN5LDved-_ua8YPkUYxXlDIlFH2YHPCcsoxTdZj87MI3aMiqDwP4jlyPpvHDhtShG_rQkBbqhel8bKeOr8YBIhkCWYAZSFyEekl6iD4OpquBBEfWoW_s2lv4_eOXxf6kseQswmhDGzoTiYF-vPRdiIbUTeiAzAiCxnfxcfLAmSbCk918lJy_Pf48e5fOP56czt7MUydVKVNrC2eZkipjuVKFUxaEAEVtVgmTG1qXNatpxcpSUuocLwrHXGUEhaK0jltxlKTTuXENq7HSq963pt_oYLzetZZYgZZMcEaRL__Jo3f2TnQrRJ3MJMpR-3LSIng9Qhx062MNTWM6CGPU-A6RKZ7R8j_QLMtzIXiB6Iu_0Ksw9h2ahpQoSppTIZF6tqPGqgW7v_dtABCQE7D2DWz2-4zqbb70NkF6myZ9ky99_P70prgzEL8Yvu91pl_qHEMm9dcPJ_qCyZmaf7nQZ8g_n3hngjaXvY_6_BOnLMdQolGiEH8AapzetA</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Lee, Changhan</creator><creator>Wigren, Edvard</creator><creator>Trček, Janja</creator><creator>Peters, Verena</creator><creator>Kim, Jihong</creator><creator>Hasni, Muhammad Sharif</creator><creator>Nimtz, Manfred</creator><creator>Lindqvist, Ylva</creator><creator>Park, Chankyu</creator><creator>Curth, Ute</creator><creator>Lünsdorf, Heinrich</creator><creator>Römling, Ute</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>201511</creationdate><title>novel protein quality control mechanism contributes to heat shock resistance of worldwide‐distributed Pseudomonas aeruginosa clone C strains</title><author>Lee, Changhan ; Wigren, Edvard ; Trček, Janja ; Peters, Verena ; Kim, Jihong ; Hasni, Muhammad Sharif ; Nimtz, Manfred ; Lindqvist, Ylva ; Park, Chankyu ; Curth, Ute ; Lünsdorf, Heinrich ; Römling, Ute</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f5795-dd8fd1757416778f7de33e70d4b3a6a0c9c1c0b199500ff288f1fba30e89df2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>cross infection</topic><topic>Cross Infection - microbiology</topic><topic>DNA, Bacterial - genetics</topic><topic>genomic islands</topic><topic>Genomic Islands - genetics</topic><topic>heat shock proteins</topic><topic>heat stability</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Response - physiology</topic><topic>Hot Temperature</topic><topic>Medicin och hälsovetenskap</topic><topic>Molecular Sequence Data</topic><topic>operon</topic><topic>pathogens</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - classification</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>quality control</topic><topic>Sequence Analysis, DNA</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Changhan</creatorcontrib><creatorcontrib>Wigren, Edvard</creatorcontrib><creatorcontrib>Trček, Janja</creatorcontrib><creatorcontrib>Peters, Verena</creatorcontrib><creatorcontrib>Kim, Jihong</creatorcontrib><creatorcontrib>Hasni, Muhammad Sharif</creatorcontrib><creatorcontrib>Nimtz, Manfred</creatorcontrib><creatorcontrib>Lindqvist, Ylva</creatorcontrib><creatorcontrib>Park, Chankyu</creatorcontrib><creatorcontrib>Curth, Ute</creatorcontrib><creatorcontrib>Lünsdorf, Heinrich</creatorcontrib><creatorcontrib>Römling, Ute</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Changhan</au><au>Wigren, Edvard</au><au>Trček, Janja</au><au>Peters, Verena</au><au>Kim, Jihong</au><au>Hasni, Muhammad Sharif</au><au>Nimtz, Manfred</au><au>Lindqvist, Ylva</au><au>Park, Chankyu</au><au>Curth, Ute</au><au>Lünsdorf, Heinrich</au><au>Römling, Ute</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>novel protein quality control mechanism contributes to heat shock resistance of worldwide‐distributed Pseudomonas aeruginosa clone C strains</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2015-11</date><risdate>2015</risdate><volume>17</volume><issue>11</issue><spage>4511</spage><epage>4526</epage><pages>4511-4526</pages><issn>1462-2912</issn><issn>1462-2920</issn><eissn>1462-2920</eissn><abstract>Pseudomonas aeruginosa is a highly successful nosocomial pathogen capable of causing a wide variety of infections with clone C strains most prevalent worldwide. In this study, we initially characterize a molecular mechanism of survival unique to clone C strains. We identified a P. aeruginosa clone C‐specific genomic island (PACGI‐1) that contains the highly expressed small heat shock protein sHsp20c, the founding member of a novel subclass of class B bacterial small heat shock proteins. sHsp20c and adjacent gene products are involved in resistance against heat shock. Heat stable sHsp20c is unconventionally expressed in stationary phase in a wide temperature range from 20 to 42°C. Purified sHsp20c has characteristic features of small heat shock protein class B as it is monodisperse, forms sphere‐like 24‐meric oligomers and exhibits significant chaperone activity. As the P. aeruginosa clone C population is significantly more heat shock resistant than genetically unrelated P. aeruginosa strains without sHsp20c, the horizontally acquired shsp20c operon might contribute to the survival of worldwide‐distributed clone C strains.</abstract><cop>England</cop><pub>Blackwell Science</pub><pmid>26014207</pmid><doi>10.1111/1462-2920.12915</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2015-11, Vol.17 (11), p.4511-4526
issn 1462-2912
1462-2920
1462-2920
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_513210
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Amino Acid Sequence
Base Sequence
cross infection
Cross Infection - microbiology
DNA, Bacterial - genetics
genomic islands
Genomic Islands - genetics
heat shock proteins
heat stability
Heat-Shock Proteins - genetics
Heat-Shock Response - physiology
Hot Temperature
Medicin och hälsovetenskap
Molecular Sequence Data
operon
pathogens
Pseudomonas aeruginosa
Pseudomonas aeruginosa - classification
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - metabolism
quality control
Sequence Analysis, DNA
temperature
title novel protein quality control mechanism contributes to heat shock resistance of worldwide‐distributed Pseudomonas aeruginosa clone C strains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=novel%20protein%20quality%20control%20mechanism%20contributes%20to%20heat%20shock%20resistance%20of%20worldwide%E2%80%90distributed%20Pseudomonas%20aeruginosa%20clone%20C%20strains&rft.jtitle=Environmental%20microbiology&rft.au=Lee,%20Changhan&rft.date=2015-11&rft.volume=17&rft.issue=11&rft.spage=4511&rft.epage=4526&rft.pages=4511-4526&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.12915&rft_dat=%3Cproquest_swepu%3E3883966621%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-f5795-dd8fd1757416778f7de33e70d4b3a6a0c9c1c0b199500ff288f1fba30e89df2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1738906035&rft_id=info:pmid/26014207&rfr_iscdi=true