Loading…

Separate Microcircuit Modules of Distinct V2a Interneurons and Motoneurons Control the Speed of Locomotion

Spinal circuits generate locomotion with variable speed as circumstances demand. These circuits have been assumed to convey equal and uniform excitation to all motoneurons whose input resistance dictates their activation sequence. However, the precise connectivity pattern between excitatory premotor...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2014-08, Vol.83 (4), p.934-943
Main Authors: Ampatzis, Konstantinos, Song, Jianren, Ausborn, Jessica, El Manira, Abdeljabbar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c693t-384bfef345d26b2439cfe693f9689cdcba31e30631fc1098f6860c507d59402a3
cites cdi_FETCH-LOGICAL-c693t-384bfef345d26b2439cfe693f9689cdcba31e30631fc1098f6860c507d59402a3
container_end_page 943
container_issue 4
container_start_page 934
container_title Neuron (Cambridge, Mass.)
container_volume 83
creator Ampatzis, Konstantinos
Song, Jianren
Ausborn, Jessica
El Manira, Abdeljabbar
description Spinal circuits generate locomotion with variable speed as circumstances demand. These circuits have been assumed to convey equal and uniform excitation to all motoneurons whose input resistance dictates their activation sequence. However, the precise connectivity pattern between excitatory premotor circuits and the different motoneuron types has remained unclear. Here, we generate a connectivity map in adult zebrafish between the V2a excitatory interneurons and slow, intermediate, and fast motoneurons. We show that the locomotor network does not consist of a uniform circuit as previously assumed. Instead, it can be deconstructed into three separate microcircuit modules with distinct V2a interneuron subclasses driving slow, intermediate, or fast motoneurons. This modular design enables the increase of locomotor speed by sequentially adding microcircuit layers from slow to intermediate and fast. Thus, this principle of organization of vertebrate spinal circuits represents an intrinsic mechanism to increase the locomotor speed by incrementally engaging different motor units. •Locomotor networks are deconstructed into three distinct microcircuit modules•In each module, distinct V2a interneurons drive slow, intermediate, or fast motoneurons•The modular organization reflects the properties and activation order of motor units•Slow, intermediate, and fast modules are sequentially engaged to increase speed Ampatzis et al. uncover an organization of the locomotor network that endows the spinal cord with an intrinsic gearshift to increase speed of locomotion by sequentially engaging three separate microcircuits, and hence gradually recruiting slow, intermediate, and fast motor units.
doi_str_mv 10.1016/j.neuron.2014.07.018
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_519593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627314006291</els_id><sourcerecordid>3409138641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693t-384bfef345d26b2439cfe693f9689cdcba31e30631fc1098f6860c507d59402a3</originalsourceid><addsrcrecordid>eNqNkk2v1CAUhonReMer_8CYJm7ctEIptGxMzPh1k7lxcdUtoXAaqR2oQDX-e6mduSYmGlfA4XnPOXBehB4TXBFM-POxcrAE76oak6bCbYVJdwftCBZt2RAh7qId7gQved3SC_QgxhFnkAlyH13UjNSU4m6HxhuYVVAJimurg9c26MWm4tqbZYJY-KF4ZWOyTqfiU62KK5cgbHVjoZzJYPLn8967FPxUpM9Q3MwAZpUfvPZHn6x3D9G9QU0RHp3WS_TxzesP-3fl4f3bq_3LQ6m5oKmkXdMPMNCGmZr3dUOFHiDfDIJ3QhvdK0qAYk7JoPNju4F3HGuGW8NEg2tFL1G55Y3fYV56OQd7VOGH9MrKU-hL3oFkRDBBMy_-ys_Bm9-is5DUgnWCtDhrn23aDH5dICZ5tFHDNCkHfomSMM67piOc_wfKGK8xxWtHT_9AR78Elz_tF4Up4XSlmo3Kc4sxwHDbOcFytYgc5TYauVpE4lZmi2TZk1PypT-CuRWdPZGBFxsAeUjfLAQZtQWnwdgAOknj7b8r_AQLQs-4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555031633</pqid></control><display><type>article</type><title>Separate Microcircuit Modules of Distinct V2a Interneurons and Motoneurons Control the Speed of Locomotion</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Ampatzis, Konstantinos ; Song, Jianren ; Ausborn, Jessica ; El Manira, Abdeljabbar</creator><creatorcontrib>Ampatzis, Konstantinos ; Song, Jianren ; Ausborn, Jessica ; El Manira, Abdeljabbar</creatorcontrib><description>Spinal circuits generate locomotion with variable speed as circumstances demand. These circuits have been assumed to convey equal and uniform excitation to all motoneurons whose input resistance dictates their activation sequence. However, the precise connectivity pattern between excitatory premotor circuits and the different motoneuron types has remained unclear. Here, we generate a connectivity map in adult zebrafish between the V2a excitatory interneurons and slow, intermediate, and fast motoneurons. We show that the locomotor network does not consist of a uniform circuit as previously assumed. Instead, it can be deconstructed into three separate microcircuit modules with distinct V2a interneuron subclasses driving slow, intermediate, or fast motoneurons. This modular design enables the increase of locomotor speed by sequentially adding microcircuit layers from slow to intermediate and fast. Thus, this principle of organization of vertebrate spinal circuits represents an intrinsic mechanism to increase the locomotor speed by incrementally engaging different motor units. •Locomotor networks are deconstructed into three distinct microcircuit modules•In each module, distinct V2a interneurons drive slow, intermediate, or fast motoneurons•The modular organization reflects the properties and activation order of motor units•Slow, intermediate, and fast modules are sequentially engaged to increase speed Ampatzis et al. uncover an organization of the locomotor network that endows the spinal cord with an intrinsic gearshift to increase speed of locomotion by sequentially engaging three separate microcircuits, and hence gradually recruiting slow, intermediate, and fast motor units.</description><identifier>ISSN: 0896-6273</identifier><identifier>ISSN: 1097-4199</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2014.07.018</identifier><identifier>PMID: 25123308</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acceleration ; Action Potentials - physiology ; Animals ; Circuits ; Danio rerio ; Interneurons - physiology ; Locomotion - physiology ; Medicin och hälsovetenskap ; Motor Neurons - physiology ; Nerve Net - cytology ; Nerve Net - physiology ; Recruitment ; Rodents ; Software ; Spinal cord ; Spinal Cord - cytology ; Spinal Cord - physiology ; Zebrafish</subject><ispartof>Neuron (Cambridge, Mass.), 2014-08, Vol.83 (4), p.934-943</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Aug 20, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c693t-384bfef345d26b2439cfe693f9689cdcba31e30631fc1098f6860c507d59402a3</citedby><cites>FETCH-LOGICAL-c693t-384bfef345d26b2439cfe693f9689cdcba31e30631fc1098f6860c507d59402a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25123308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:129589170$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ampatzis, Konstantinos</creatorcontrib><creatorcontrib>Song, Jianren</creatorcontrib><creatorcontrib>Ausborn, Jessica</creatorcontrib><creatorcontrib>El Manira, Abdeljabbar</creatorcontrib><title>Separate Microcircuit Modules of Distinct V2a Interneurons and Motoneurons Control the Speed of Locomotion</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Spinal circuits generate locomotion with variable speed as circumstances demand. These circuits have been assumed to convey equal and uniform excitation to all motoneurons whose input resistance dictates their activation sequence. However, the precise connectivity pattern between excitatory premotor circuits and the different motoneuron types has remained unclear. Here, we generate a connectivity map in adult zebrafish between the V2a excitatory interneurons and slow, intermediate, and fast motoneurons. We show that the locomotor network does not consist of a uniform circuit as previously assumed. Instead, it can be deconstructed into three separate microcircuit modules with distinct V2a interneuron subclasses driving slow, intermediate, or fast motoneurons. This modular design enables the increase of locomotor speed by sequentially adding microcircuit layers from slow to intermediate and fast. Thus, this principle of organization of vertebrate spinal circuits represents an intrinsic mechanism to increase the locomotor speed by incrementally engaging different motor units. •Locomotor networks are deconstructed into three distinct microcircuit modules•In each module, distinct V2a interneurons drive slow, intermediate, or fast motoneurons•The modular organization reflects the properties and activation order of motor units•Slow, intermediate, and fast modules are sequentially engaged to increase speed Ampatzis et al. uncover an organization of the locomotor network that endows the spinal cord with an intrinsic gearshift to increase speed of locomotion by sequentially engaging three separate microcircuits, and hence gradually recruiting slow, intermediate, and fast motor units.</description><subject>Acceleration</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Circuits</subject><subject>Danio rerio</subject><subject>Interneurons - physiology</subject><subject>Locomotion - physiology</subject><subject>Medicin och hälsovetenskap</subject><subject>Motor Neurons - physiology</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Recruitment</subject><subject>Rodents</subject><subject>Software</subject><subject>Spinal cord</subject><subject>Spinal Cord - cytology</subject><subject>Spinal Cord - physiology</subject><subject>Zebrafish</subject><issn>0896-6273</issn><issn>1097-4199</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkk2v1CAUhonReMer_8CYJm7ctEIptGxMzPh1k7lxcdUtoXAaqR2oQDX-e6mduSYmGlfA4XnPOXBehB4TXBFM-POxcrAE76oak6bCbYVJdwftCBZt2RAh7qId7gQved3SC_QgxhFnkAlyH13UjNSU4m6HxhuYVVAJimurg9c26MWm4tqbZYJY-KF4ZWOyTqfiU62KK5cgbHVjoZzJYPLn8967FPxUpM9Q3MwAZpUfvPZHn6x3D9G9QU0RHp3WS_TxzesP-3fl4f3bq_3LQ6m5oKmkXdMPMNCGmZr3dUOFHiDfDIJ3QhvdK0qAYk7JoPNju4F3HGuGW8NEg2tFL1G55Y3fYV56OQd7VOGH9MrKU-hL3oFkRDBBMy_-ys_Bm9-is5DUgnWCtDhrn23aDH5dICZ5tFHDNCkHfomSMM67piOc_wfKGK8xxWtHT_9AR78Elz_tF4Up4XSlmo3Kc4sxwHDbOcFytYgc5TYauVpE4lZmi2TZk1PypT-CuRWdPZGBFxsAeUjfLAQZtQWnwdgAOknj7b8r_AQLQs-4</recordid><startdate>20140820</startdate><enddate>20140820</enddate><creator>Ampatzis, Konstantinos</creator><creator>Song, Jianren</creator><creator>Ausborn, Jessica</creator><creator>El Manira, Abdeljabbar</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20140820</creationdate><title>Separate Microcircuit Modules of Distinct V2a Interneurons and Motoneurons Control the Speed of Locomotion</title><author>Ampatzis, Konstantinos ; Song, Jianren ; Ausborn, Jessica ; El Manira, Abdeljabbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693t-384bfef345d26b2439cfe693f9689cdcba31e30631fc1098f6860c507d59402a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acceleration</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Circuits</topic><topic>Danio rerio</topic><topic>Interneurons - physiology</topic><topic>Locomotion - physiology</topic><topic>Medicin och hälsovetenskap</topic><topic>Motor Neurons - physiology</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Recruitment</topic><topic>Rodents</topic><topic>Software</topic><topic>Spinal cord</topic><topic>Spinal Cord - cytology</topic><topic>Spinal Cord - physiology</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ampatzis, Konstantinos</creatorcontrib><creatorcontrib>Song, Jianren</creatorcontrib><creatorcontrib>Ausborn, Jessica</creatorcontrib><creatorcontrib>El Manira, Abdeljabbar</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ampatzis, Konstantinos</au><au>Song, Jianren</au><au>Ausborn, Jessica</au><au>El Manira, Abdeljabbar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separate Microcircuit Modules of Distinct V2a Interneurons and Motoneurons Control the Speed of Locomotion</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2014-08-20</date><risdate>2014</risdate><volume>83</volume><issue>4</issue><spage>934</spage><epage>943</epage><pages>934-943</pages><issn>0896-6273</issn><issn>1097-4199</issn><eissn>1097-4199</eissn><abstract>Spinal circuits generate locomotion with variable speed as circumstances demand. These circuits have been assumed to convey equal and uniform excitation to all motoneurons whose input resistance dictates their activation sequence. However, the precise connectivity pattern between excitatory premotor circuits and the different motoneuron types has remained unclear. Here, we generate a connectivity map in adult zebrafish between the V2a excitatory interneurons and slow, intermediate, and fast motoneurons. We show that the locomotor network does not consist of a uniform circuit as previously assumed. Instead, it can be deconstructed into three separate microcircuit modules with distinct V2a interneuron subclasses driving slow, intermediate, or fast motoneurons. This modular design enables the increase of locomotor speed by sequentially adding microcircuit layers from slow to intermediate and fast. Thus, this principle of organization of vertebrate spinal circuits represents an intrinsic mechanism to increase the locomotor speed by incrementally engaging different motor units. •Locomotor networks are deconstructed into three distinct microcircuit modules•In each module, distinct V2a interneurons drive slow, intermediate, or fast motoneurons•The modular organization reflects the properties and activation order of motor units•Slow, intermediate, and fast modules are sequentially engaged to increase speed Ampatzis et al. uncover an organization of the locomotor network that endows the spinal cord with an intrinsic gearshift to increase speed of locomotion by sequentially engaging three separate microcircuits, and hence gradually recruiting slow, intermediate, and fast motor units.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25123308</pmid><doi>10.1016/j.neuron.2014.07.018</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2014-08, Vol.83 (4), p.934-943
issn 0896-6273
1097-4199
1097-4199
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_519593
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Acceleration
Action Potentials - physiology
Animals
Circuits
Danio rerio
Interneurons - physiology
Locomotion - physiology
Medicin och hälsovetenskap
Motor Neurons - physiology
Nerve Net - cytology
Nerve Net - physiology
Recruitment
Rodents
Software
Spinal cord
Spinal Cord - cytology
Spinal Cord - physiology
Zebrafish
title Separate Microcircuit Modules of Distinct V2a Interneurons and Motoneurons Control the Speed of Locomotion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separate%20Microcircuit%20Modules%20of%20Distinct%20V2a%20Interneurons%20and%20Motoneurons%20Control%20the%20Speed%20of%20Locomotion&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Ampatzis,%20Konstantinos&rft.date=2014-08-20&rft.volume=83&rft.issue=4&rft.spage=934&rft.epage=943&rft.pages=934-943&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2014.07.018&rft_dat=%3Cproquest_swepu%3E3409138641%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c693t-384bfef345d26b2439cfe693f9689cdcba31e30631fc1098f6860c507d59402a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1555031633&rft_id=info:pmid/25123308&rfr_iscdi=true