Loading…

Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes

Diabetes is a major driver of cardiovascular disease, but the underlying mechanisms remain elusive. Prolyl-isomerase Pin1 recognizes specific peptide bonds and modulates function of proteins altering cellular homoeostasis. The present study investigates Pin1 role in diabetes-induced vascular disease...

Full description

Saved in:
Bibliographic Details
Published in:European heart journal 2015-04, Vol.36 (13), p.817-828
Main Authors: Paneni, Francesco, Costantino, Sarah, Castello, Lorenzo, Battista, Rodolfo, Capretti, Giuliana, Chiandotto, Sergio, D'Amario, Domenico, Scavone, Giuseppe, Villano, Angelo, Rustighi, Alessandra, Crea, Filippo, Pitocco, Dario, Lanza, Gaetano, Volpe, Massimo, Del Sal, Giannino, Lüscher, Thomas F, Cosentino, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diabetes is a major driver of cardiovascular disease, but the underlying mechanisms remain elusive. Prolyl-isomerase Pin1 recognizes specific peptide bonds and modulates function of proteins altering cellular homoeostasis. The present study investigates Pin1 role in diabetes-induced vascular disease. In human aortic endothelial cells (HAECs) exposed to high glucose, up-regulation of Pin1-induced mitochondrial translocation of pro-oxidant adaptor p66(Shc) and subsequent organelle disruption. In this setting, Pin1 recognizes Ser-116 inhibitory phosphorylation of endothelial nitric oxide synthase (eNOS) leading to eNOS-caveolin-1 interaction and reduced NO availability. Pin1 also mediates hyperglycaemia-induced nuclear translocation of NF-κB p65, triggering VCAM-1, ICAM-1, and MCP-1 expression. Indeed, gene silencing of Pin1 in HAECs suppressed p66(Shc)-dependent ROS production, restored NO release and blunted NF-kB p65 nuclear translocation. Consistently, diabetic Pin1(-/-) mice were protected against mitochondrial oxidative stress, endothelial dysfunction, and vascular inflammation. Increased expression and activity of Pin1 were also found in peripheral blood monocytes isolated from diabetic patients when compared with age-matched healthy controls. Interestingly, enough, Pin1 up-regulation was associated with impaired flow-mediated dilation, increased urinary 8-iso-prostaglandin F2α and plasma levels of adhesion molecules. Pin1 drives diabetic vascular disease by causing mitochondrial oxidative stress, eNOS dysregulation as well as NF-kB-induced inflammation. These findings provide molecular insights for novel mechanism-based therapeutic strategies in patients with diabetes.
ISSN:0195-668X
1522-9645
1522-9645
DOI:10.1093/eurheartj/ehu179