Loading…
The mitochondrial reactive oxygen species regulator p66Shc controls PDGF-induced signaling and migration through protein tyrosine phosphatase oxidation
Growth factor receptors induce a transient increase in reactive oxygen species (ROS) levels upon receptor binding to promote signaling through oxidation of protein tyrosine phosphatases (PTPs). Most studies have focused on NADPH oxidases as the dominant source of ROS to induce PTP oxidation. A poten...
Saved in:
Published in: | Free radical biology & medicine 2014-03, Vol.68, p.268-277 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Growth factor receptors induce a transient increase in reactive oxygen species (ROS) levels upon receptor binding to promote signaling through oxidation of protein tyrosine phosphatases (PTPs). Most studies have focused on NADPH oxidases as the dominant source of ROS to induce PTP oxidation. A potential additional regulator of growth factor-induced PTP oxidation is p66Shc, which stimulates mitochondrial ROS production. This study explores the contribution of p66Shc-induced ROS to PTP oxidation and growth factor receptor-induced signaling and migration through analyses of p66Shc-KO fibroblasts and cells with siRNA-mediated p66Shc downregulation. Analyses of PDGFβR phosphorylation in two independent cell systems demonstrated a decrease in PDGFβR phosphorylation after p66Shc deletion or downregulation, which occurred in a partially site-selective and antioxidant-sensitive manner. Deletion of p66Shc also reduced PDGF-induced activation of downstream signaling of Erk, Akt, PLCγ-1, and FAK. Importantly, reduced levels of p66Shc led to decreased oxidation of DEP1, PTP1B, and SHP2 after PDGF stimulation. The cell biological relevance of these findings was indicated by demonstration of a significantly reduced migratory response in PDGF-stimulated p66Shc-KO fibroblasts, consistent with reduced PDGFβR-Y1021 and PLCγ-1 phosphorylation. Downregulation of p66Shc also reduced EGFR phosphorylation and signaling, indicating that the positive role of p66Shc in receptor tyrosine kinase signaling is potentially general. Moreover, downregulation of the mitochondrial hydrogen peroxide scavenger peroxiredoxin 3 increased PDGFβR phosphorylation, showing that mitochondrial ROS in general promote PDGFβR signaling. This study thus identifies a previously unrecognized role for p66Shc in the regulation of PTP oxidation controlling growth factor-induced signaling and migration. In more general terms, the study indicates a regulatory role for mitochondrial-derived ROS in the control of PTP oxidation influencing growth factor signaling.
•p66Shc deletion and downregulation decreases PDGF-induced signaling and migration.•p66Shc deletion and downregulation decreases PDGF-induced PTP oxidation.•Downregulation of mitochondrial H2O2 scavenger Prx3 increases PDGFR phosphorylation.•ROS from mitochondria positively regulate PDGF signaling by oxidizing PTPs. |
---|---|
ISSN: | 0891-5849 1873-4596 1873-4596 |
DOI: | 10.1016/j.freeradbiomed.2013.12.022 |