Loading…

Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor

Endothelial cells have a robust capacity to proliferate and participate in angiogenesis, which underlies the maintenance of intimal layer integrity. We previously showed the presence of the GLP-1 receptor in human coronary artery endothelial cells (HCAECs) and the ameliorative actions of GLP-1 on en...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and cellular endocrinology 2010-08, Vol.325 (1), p.26-35
Main Authors: Erdogdu, Ö., Nathanson, D., Sjöholm, Å., Nyström, T., Zhang, Q.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Endothelial cells have a robust capacity to proliferate and participate in angiogenesis, which underlies the maintenance of intimal layer integrity. We previously showed the presence of the GLP-1 receptor in human coronary artery endothelial cells (HCAECs) and the ameliorative actions of GLP-1 on endothelial dysfunction in type 2 diabetic patients. Here, we have studied the effect of exendin-4 on cell proliferation and its underlying mechanisms in HCAECs. Incubation of HCAECs with exendin-4 resulted in a dose-dependent increase in DNA synthesis and an increased cell number, associated with an enhanced eNOS and Akt activation, which were inhibited by PKA, PI3K, Akt or eNOS inhibitors and abolished by a GLP-1 receptor antagonist. Similar effects were obtained by applying GLP-1 (7–36) or GLP-1 (9–36). Co-incubation of exendin-4 and GLP-1 did not show additive effects. Our results suggest that exendin-4 stimulates proliferation of HCAECs through PKA-PI3K/Akt-eNOS activation pathways via a GLP-1 receptor-dependent mechanism.
ISSN:0303-7207
1872-8057
1872-8057
DOI:10.1016/j.mce.2010.04.022