Loading…
Analysis of Oil Composition in Cultivars and Wild Species of Oat (Avena sp.)
Oil quality and content were analyzed in 33 accessions from 13 wild species and 10 accessions of cultivated oat. Wild oat species tended to have higher oil and 18:1 fatty acid (FA) contents and lower amounts of 18:2 and 18:3 FAs as compared to cultivated oats. In addition to common FAs, minor amount...
Saved in:
Published in: | Journal of agricultural and food chemistry 2008-09, Vol.56 (17), p.7983-7991 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oil quality and content were analyzed in 33 accessions from 13 wild species and 10 accessions of cultivated oat. Wild oat species tended to have higher oil and 18:1 fatty acid (FA) contents and lower amounts of 18:2 and 18:3 FAs as compared to cultivated oats. In addition to common FAs, minor amounts of several hydroxy and epoxy FAs were also present in the oat oil and mainly confined to specific lipid classes. These unusual FAs included the previously reported 15-hydroxy 18:2Δ9,12 (avenoleic acid) mostly found among polar lipids and a novel 7-hydroxyhexadecanoic acid located to 1,2-diacylglycerol. The present study highlights the potential of making use of the existing germplasm, consisting of wild oat species, in breeding programs for achieving new oat varieties that produce a range of oils with different FA compositions as well as having high oil contents. However, in one matter, oats apparently lack genetic diversity and that is for oil qualities that are highly enriched in the omega 3 (ω-3) FA 18:3. Consequently, developing oat cultivars with highly unsaturated oils will need involvement of other techniques such as biotechnology. |
---|---|
ISSN: | 0021-8561 1520-5118 1520-5118 |
DOI: | 10.1021/jf800761c |