Loading…

Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation

These days it has been increasingly recognized that mast cells (MCs) are critical components of host defense against pathogens. In this study, we have provided the first evidence that MCs can kill bacteria by entrapping them in extracellular structures similar to the extracellular traps described fo...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2008-03, Vol.111 (6), p.3070-3080
Main Authors: von Köckritz-Blickwede, Maren, Goldmann, Oliver, Thulin, Pontus, Heinemann, Katja, Norrby-Teglund, Anna, Rohde, Manfred, Medina, Eva
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:These days it has been increasingly recognized that mast cells (MCs) are critical components of host defense against pathogens. In this study, we have provided the first evidence that MCs can kill bacteria by entrapping them in extracellular structures similar to the extracellular traps described for neutrophils (NETs). We took advantage of the ability of MCs to kill the human pathogen Streptococcus pyogenes by a phagocytosis-independent mechanism in order to characterize the extracellular antimicrobial activity of MCs. Close contact of bacteria and MCs was required for full antimicrobial activity. Immunofluorescence and electron microscopy revealed that S pyogenes was entrapped by extracellular structures produced by MCs (MCETs), which are composed of DNA, histones, tryptase, and the antimicrobial peptide LL-37. Disruption of MCETs significantly reduced the antimicrobial effect of MCs, suggesting that intact extracellular webs are critical for effective inhibition of bacterial growth. Similar to NETs, production of MCETs was mediated by a reactive oxygen species (ROS)–dependent cell death mechanism accompanied by disruption of the nuclear envelope, which can be induced after stimulation of MCs with phorbol-12-myristate-13-acetate (PMA), H2O2, or bacterial pathogens. Our study provides the first experimental evidence of antimicrobial extracellular traps formation by an immune cell population other than neutrophils.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2007-07-104018