Loading…

Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity

The roles of endocannabinoid signaling during central nervous system development are unknown. We report that CB₁ cannabinoid receptors (CB₁Rs) are enriched in the axonal growth cones of γ-aminobutyric acid-containing (GABAergic) interneurons in the rodent cortex during late gestation. Endocannabinoi...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2007-05, Vol.316 (5828), p.1212-1216
Main Authors: Berghuis, Paul, Rajnicek, Ann M, Morozov, Yury M, Ross, Ruth A, Mulder, Jan, Urbán, Gabriella M, Monory, Krisztina, Marsicano, Giovanni, Matteoli, Michela, Canty, Alison, Irving, Andrew J, Katona, István, Yanagawa, Yuchio, Rakic, Pasko, Lutz, Beat, Mackie, Ken, Harkany, Tibor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c636t-794585d29b589a048265f9f1be32637e71ab0985608801e65d6e49374c4a423d3
cites cdi_FETCH-LOGICAL-c636t-794585d29b589a048265f9f1be32637e71ab0985608801e65d6e49374c4a423d3
container_end_page 1216
container_issue 5828
container_start_page 1212
container_title Science (American Association for the Advancement of Science)
container_volume 316
creator Berghuis, Paul
Rajnicek, Ann M
Morozov, Yury M
Ross, Ruth A
Mulder, Jan
Urbán, Gabriella M
Monory, Krisztina
Marsicano, Giovanni
Matteoli, Michela
Canty, Alison
Irving, Andrew J
Katona, István
Yanagawa, Yuchio
Rakic, Pasko
Lutz, Beat
Mackie, Ken
Harkany, Tibor
description The roles of endocannabinoid signaling during central nervous system development are unknown. We report that CB₁ cannabinoid receptors (CB₁Rs) are enriched in the axonal growth cones of γ-aminobutyric acid-containing (GABAergic) interneurons in the rodent cortex during late gestation. Endocannabinoids trigger CB₁R internalization and elimination from filopodia and induce chemorepulsion and collapse of axonal growth cones of these GABAergic interneurons by activating RhoA. Similarly, endocannabinoids diminish the galvanotropism of Xenopus laevis spinal neurons. These findings, together with the impaired target selection of cortical GABAergic interneurons lacking CB₁Rs, identify endocannabinoids as axon guidance cues and demonstrate that endocannabinoid signaling regulates synaptogenesis and target selection in vivo.
doi_str_mv 10.1126/science.1137406
format article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_569960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20036346</jstor_id><sourcerecordid>20036346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c636t-794585d29b589a048265f9f1be32637e71ab0985608801e65d6e49374c4a423d3</originalsourceid><addsrcrecordid>eNqFkktv1DAUhS0EokNhzQqIkIBVqN8PdnRUKFIFi9K15ThO6yFjD3ZC1X-Po4SOhASz8uN-51z5-gDwHMH3CGF-kq13wbpyIIJC_gCsEFSsVhiSh2AFIeG1hIIdgSc5byAsNUUegyMkGGaE0hU4PTepvfXJh-tquHHVaTI-fKjOQhutCcE0PkTf5uryxuxc9dWNKQbTV-sYgrOD_-WHu6fgUWf67J4t6zG4-nT2fX1eX3z7_GX98aK2nPChFooyyVqsGiaVgVRizjrVocYRzIlwApkGKsk4lBIix1nLHVXlWZYaiklLjkE9--ZbtxsbvUt-a9Kdjsbr5epH2TnNuFIcFl78k9-l2O5Ff4RIUVLGUpTvZmXBfo4uD3rrs3V9b4KLY9aCEsQxFaSQb_9PQsYYxOIgSBhGmAl6EMQI8fJ9hx2R4pxhgQv4-i9wE8dUfnEyI0xyxqe2JzNkU8w5ue5-XAjqKWp6iZpeolYULxfbsdm6ds8v2SrAmwUw2Zq-SyZYn_eclAhJhgr3YuY2eYjpvo6n9BI6NXo11zsTtblOxePqEkNEIBRCIiLJb6eI7b0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213586564</pqid></control><display><type>article</type><title>Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Berghuis, Paul ; Rajnicek, Ann M ; Morozov, Yury M ; Ross, Ruth A ; Mulder, Jan ; Urbán, Gabriella M ; Monory, Krisztina ; Marsicano, Giovanni ; Matteoli, Michela ; Canty, Alison ; Irving, Andrew J ; Katona, István ; Yanagawa, Yuchio ; Rakic, Pasko ; Lutz, Beat ; Mackie, Ken ; Harkany, Tibor</creator><creatorcontrib>Berghuis, Paul ; Rajnicek, Ann M ; Morozov, Yury M ; Ross, Ruth A ; Mulder, Jan ; Urbán, Gabriella M ; Monory, Krisztina ; Marsicano, Giovanni ; Matteoli, Michela ; Canty, Alison ; Irving, Andrew J ; Katona, István ; Yanagawa, Yuchio ; Rakic, Pasko ; Lutz, Beat ; Mackie, Ken ; Harkany, Tibor</creatorcontrib><description>The roles of endocannabinoid signaling during central nervous system development are unknown. We report that CB₁ cannabinoid receptors (CB₁Rs) are enriched in the axonal growth cones of γ-aminobutyric acid-containing (GABAergic) interneurons in the rodent cortex during late gestation. Endocannabinoids trigger CB₁R internalization and elimination from filopodia and induce chemorepulsion and collapse of axonal growth cones of these GABAergic interneurons by activating RhoA. Similarly, endocannabinoids diminish the galvanotropism of Xenopus laevis spinal neurons. These findings, together with the impaired target selection of cortical GABAergic interneurons lacking CB₁Rs, identify endocannabinoids as axon guidance cues and demonstrate that endocannabinoid signaling regulates synaptogenesis and target selection in vivo.</description><identifier>ISSN: 0036-8075</identifier><identifier>ISSN: 1095-9203</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1137406</identifier><identifier>PMID: 17525344</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Animals ; Axons ; Axons - physiology ; Behavioral neuroscience ; Biological and medical sciences ; Brain research ; Cannabinoid Receptor Modulators - metabolism ; Cannabinoid Receptor Modulators - physiology ; Cell Movement ; Cells, Cultured ; Cerebral Cortex - cytology ; Cerebral Cortex - embryology ; Cerebral Cortex - ultrastructure ; Development. Senescence. Regeneration. Transplantation ; Endocannabinoids ; Fundamental and applied biological sciences. Psychology ; gamma-Aminobutyric Acid - metabolism ; Growth cones ; Growth Cones - diagnostic imaging ; Growth Cones - physiology ; Hippocampus ; In Situ Hybridization ; Interneurons ; Interneurons - diagnostic imaging ; Interneurons - metabolism ; Interneurons - physiology ; Medicin och hälsovetenskap ; Mice ; Mice, Inbred C57BL ; Microscopy, Confocal ; Nervous system ; Neurites ; Neurons ; Pyramidal cells ; Rats ; Rats, Sprague-Dawley ; Receptor, Cannabinoid, CB1 - agonists ; Receptor, Cannabinoid, CB1 - physiology ; Signal Transduction ; Steering ; Stem Cells - metabolism ; Synapses - diagnostic imaging ; Synapses - physiology ; Ultrasonography ; Vertebrates: nervous system and sense organs ; Xenopus laevis ; Xenopus Proteins - physiology</subject><ispartof>Science (American Association for the Advancement of Science), 2007-05, Vol.316 (5828), p.1212-1216</ispartof><rights>Copyright 2007 American Association for the Advancement of Science</rights><rights>2007 INIST-CNRS</rights><rights>Copyright © 2007, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c636t-794585d29b589a048265f9f1be32637e71ab0985608801e65d6e49374c4a423d3</citedby><cites>FETCH-LOGICAL-c636t-794585d29b589a048265f9f1be32637e71ab0985608801e65d6e49374c4a423d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20036346$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20036346$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18811851$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17525344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:1943534$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Berghuis, Paul</creatorcontrib><creatorcontrib>Rajnicek, Ann M</creatorcontrib><creatorcontrib>Morozov, Yury M</creatorcontrib><creatorcontrib>Ross, Ruth A</creatorcontrib><creatorcontrib>Mulder, Jan</creatorcontrib><creatorcontrib>Urbán, Gabriella M</creatorcontrib><creatorcontrib>Monory, Krisztina</creatorcontrib><creatorcontrib>Marsicano, Giovanni</creatorcontrib><creatorcontrib>Matteoli, Michela</creatorcontrib><creatorcontrib>Canty, Alison</creatorcontrib><creatorcontrib>Irving, Andrew J</creatorcontrib><creatorcontrib>Katona, István</creatorcontrib><creatorcontrib>Yanagawa, Yuchio</creatorcontrib><creatorcontrib>Rakic, Pasko</creatorcontrib><creatorcontrib>Lutz, Beat</creatorcontrib><creatorcontrib>Mackie, Ken</creatorcontrib><creatorcontrib>Harkany, Tibor</creatorcontrib><title>Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The roles of endocannabinoid signaling during central nervous system development are unknown. We report that CB₁ cannabinoid receptors (CB₁Rs) are enriched in the axonal growth cones of γ-aminobutyric acid-containing (GABAergic) interneurons in the rodent cortex during late gestation. Endocannabinoids trigger CB₁R internalization and elimination from filopodia and induce chemorepulsion and collapse of axonal growth cones of these GABAergic interneurons by activating RhoA. Similarly, endocannabinoids diminish the galvanotropism of Xenopus laevis spinal neurons. These findings, together with the impaired target selection of cortical GABAergic interneurons lacking CB₁Rs, identify endocannabinoids as axon guidance cues and demonstrate that endocannabinoid signaling regulates synaptogenesis and target selection in vivo.</description><subject>Animals</subject><subject>Axons</subject><subject>Axons - physiology</subject><subject>Behavioral neuroscience</subject><subject>Biological and medical sciences</subject><subject>Brain research</subject><subject>Cannabinoid Receptor Modulators - metabolism</subject><subject>Cannabinoid Receptor Modulators - physiology</subject><subject>Cell Movement</subject><subject>Cells, Cultured</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - embryology</subject><subject>Cerebral Cortex - ultrastructure</subject><subject>Development. Senescence. Regeneration. Transplantation</subject><subject>Endocannabinoids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>Growth cones</subject><subject>Growth Cones - diagnostic imaging</subject><subject>Growth Cones - physiology</subject><subject>Hippocampus</subject><subject>In Situ Hybridization</subject><subject>Interneurons</subject><subject>Interneurons - diagnostic imaging</subject><subject>Interneurons - metabolism</subject><subject>Interneurons - physiology</subject><subject>Medicin och hälsovetenskap</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy, Confocal</subject><subject>Nervous system</subject><subject>Neurites</subject><subject>Neurons</subject><subject>Pyramidal cells</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, Cannabinoid, CB1 - agonists</subject><subject>Receptor, Cannabinoid, CB1 - physiology</subject><subject>Signal Transduction</subject><subject>Steering</subject><subject>Stem Cells - metabolism</subject><subject>Synapses - diagnostic imaging</subject><subject>Synapses - physiology</subject><subject>Ultrasonography</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Xenopus laevis</subject><subject>Xenopus Proteins - physiology</subject><issn>0036-8075</issn><issn>1095-9203</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkktv1DAUhS0EokNhzQqIkIBVqN8PdnRUKFIFi9K15ThO6yFjD3ZC1X-Po4SOhASz8uN-51z5-gDwHMH3CGF-kq13wbpyIIJC_gCsEFSsVhiSh2AFIeG1hIIdgSc5byAsNUUegyMkGGaE0hU4PTepvfXJh-tquHHVaTI-fKjOQhutCcE0PkTf5uryxuxc9dWNKQbTV-sYgrOD_-WHu6fgUWf67J4t6zG4-nT2fX1eX3z7_GX98aK2nPChFooyyVqsGiaVgVRizjrVocYRzIlwApkGKsk4lBIix1nLHVXlWZYaiklLjkE9--ZbtxsbvUt-a9Kdjsbr5epH2TnNuFIcFl78k9-l2O5Ff4RIUVLGUpTvZmXBfo4uD3rrs3V9b4KLY9aCEsQxFaSQb_9PQsYYxOIgSBhGmAl6EMQI8fJ9hx2R4pxhgQv4-i9wE8dUfnEyI0xyxqe2JzNkU8w5ue5-XAjqKWp6iZpeolYULxfbsdm6ds8v2SrAmwUw2Zq-SyZYn_eclAhJhgr3YuY2eYjpvo6n9BI6NXo11zsTtblOxePqEkNEIBRCIiLJb6eI7b0</recordid><startdate>20070525</startdate><enddate>20070525</enddate><creator>Berghuis, Paul</creator><creator>Rajnicek, Ann M</creator><creator>Morozov, Yury M</creator><creator>Ross, Ruth A</creator><creator>Mulder, Jan</creator><creator>Urbán, Gabriella M</creator><creator>Monory, Krisztina</creator><creator>Marsicano, Giovanni</creator><creator>Matteoli, Michela</creator><creator>Canty, Alison</creator><creator>Irving, Andrew J</creator><creator>Katona, István</creator><creator>Yanagawa, Yuchio</creator><creator>Rakic, Pasko</creator><creator>Lutz, Beat</creator><creator>Mackie, Ken</creator><creator>Harkany, Tibor</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>20070525</creationdate><title>Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity</title><author>Berghuis, Paul ; Rajnicek, Ann M ; Morozov, Yury M ; Ross, Ruth A ; Mulder, Jan ; Urbán, Gabriella M ; Monory, Krisztina ; Marsicano, Giovanni ; Matteoli, Michela ; Canty, Alison ; Irving, Andrew J ; Katona, István ; Yanagawa, Yuchio ; Rakic, Pasko ; Lutz, Beat ; Mackie, Ken ; Harkany, Tibor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c636t-794585d29b589a048265f9f1be32637e71ab0985608801e65d6e49374c4a423d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Axons</topic><topic>Axons - physiology</topic><topic>Behavioral neuroscience</topic><topic>Biological and medical sciences</topic><topic>Brain research</topic><topic>Cannabinoid Receptor Modulators - metabolism</topic><topic>Cannabinoid Receptor Modulators - physiology</topic><topic>Cell Movement</topic><topic>Cells, Cultured</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - embryology</topic><topic>Cerebral Cortex - ultrastructure</topic><topic>Development. Senescence. Regeneration. Transplantation</topic><topic>Endocannabinoids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>Growth cones</topic><topic>Growth Cones - diagnostic imaging</topic><topic>Growth Cones - physiology</topic><topic>Hippocampus</topic><topic>In Situ Hybridization</topic><topic>Interneurons</topic><topic>Interneurons - diagnostic imaging</topic><topic>Interneurons - metabolism</topic><topic>Interneurons - physiology</topic><topic>Medicin och hälsovetenskap</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy, Confocal</topic><topic>Nervous system</topic><topic>Neurites</topic><topic>Neurons</topic><topic>Pyramidal cells</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, Cannabinoid, CB1 - agonists</topic><topic>Receptor, Cannabinoid, CB1 - physiology</topic><topic>Signal Transduction</topic><topic>Steering</topic><topic>Stem Cells - metabolism</topic><topic>Synapses - diagnostic imaging</topic><topic>Synapses - physiology</topic><topic>Ultrasonography</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Xenopus laevis</topic><topic>Xenopus Proteins - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berghuis, Paul</creatorcontrib><creatorcontrib>Rajnicek, Ann M</creatorcontrib><creatorcontrib>Morozov, Yury M</creatorcontrib><creatorcontrib>Ross, Ruth A</creatorcontrib><creatorcontrib>Mulder, Jan</creatorcontrib><creatorcontrib>Urbán, Gabriella M</creatorcontrib><creatorcontrib>Monory, Krisztina</creatorcontrib><creatorcontrib>Marsicano, Giovanni</creatorcontrib><creatorcontrib>Matteoli, Michela</creatorcontrib><creatorcontrib>Canty, Alison</creatorcontrib><creatorcontrib>Irving, Andrew J</creatorcontrib><creatorcontrib>Katona, István</creatorcontrib><creatorcontrib>Yanagawa, Yuchio</creatorcontrib><creatorcontrib>Rakic, Pasko</creatorcontrib><creatorcontrib>Lutz, Beat</creatorcontrib><creatorcontrib>Mackie, Ken</creatorcontrib><creatorcontrib>Harkany, Tibor</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berghuis, Paul</au><au>Rajnicek, Ann M</au><au>Morozov, Yury M</au><au>Ross, Ruth A</au><au>Mulder, Jan</au><au>Urbán, Gabriella M</au><au>Monory, Krisztina</au><au>Marsicano, Giovanni</au><au>Matteoli, Michela</au><au>Canty, Alison</au><au>Irving, Andrew J</au><au>Katona, István</au><au>Yanagawa, Yuchio</au><au>Rakic, Pasko</au><au>Lutz, Beat</au><au>Mackie, Ken</au><au>Harkany, Tibor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2007-05-25</date><risdate>2007</risdate><volume>316</volume><issue>5828</issue><spage>1212</spage><epage>1216</epage><pages>1212-1216</pages><issn>0036-8075</issn><issn>1095-9203</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The roles of endocannabinoid signaling during central nervous system development are unknown. We report that CB₁ cannabinoid receptors (CB₁Rs) are enriched in the axonal growth cones of γ-aminobutyric acid-containing (GABAergic) interneurons in the rodent cortex during late gestation. Endocannabinoids trigger CB₁R internalization and elimination from filopodia and induce chemorepulsion and collapse of axonal growth cones of these GABAergic interneurons by activating RhoA. Similarly, endocannabinoids diminish the galvanotropism of Xenopus laevis spinal neurons. These findings, together with the impaired target selection of cortical GABAergic interneurons lacking CB₁Rs, identify endocannabinoids as axon guidance cues and demonstrate that endocannabinoid signaling regulates synaptogenesis and target selection in vivo.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>17525344</pmid><doi>10.1126/science.1137406</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2007-05, Vol.316 (5828), p.1212-1216
issn 0036-8075
1095-9203
1095-9203
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_569960
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Animals
Axons
Axons - physiology
Behavioral neuroscience
Biological and medical sciences
Brain research
Cannabinoid Receptor Modulators - metabolism
Cannabinoid Receptor Modulators - physiology
Cell Movement
Cells, Cultured
Cerebral Cortex - cytology
Cerebral Cortex - embryology
Cerebral Cortex - ultrastructure
Development. Senescence. Regeneration. Transplantation
Endocannabinoids
Fundamental and applied biological sciences. Psychology
gamma-Aminobutyric Acid - metabolism
Growth cones
Growth Cones - diagnostic imaging
Growth Cones - physiology
Hippocampus
In Situ Hybridization
Interneurons
Interneurons - diagnostic imaging
Interneurons - metabolism
Interneurons - physiology
Medicin och hälsovetenskap
Mice
Mice, Inbred C57BL
Microscopy, Confocal
Nervous system
Neurites
Neurons
Pyramidal cells
Rats
Rats, Sprague-Dawley
Receptor, Cannabinoid, CB1 - agonists
Receptor, Cannabinoid, CB1 - physiology
Signal Transduction
Steering
Stem Cells - metabolism
Synapses - diagnostic imaging
Synapses - physiology
Ultrasonography
Vertebrates: nervous system and sense organs
Xenopus laevis
Xenopus Proteins - physiology
title Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hardwiring%20the%20Brain:%20Endocannabinoids%20Shape%20Neuronal%20Connectivity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Berghuis,%20Paul&rft.date=2007-05-25&rft.volume=316&rft.issue=5828&rft.spage=1212&rft.epage=1216&rft.pages=1212-1216&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1137406&rft_dat=%3Cjstor_swepu%3E20036346%3C/jstor_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c636t-794585d29b589a048265f9f1be32637e71ab0985608801e65d6e49374c4a423d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213586564&rft_id=info:pmid/17525344&rft_jstor_id=20036346&rfr_iscdi=true