Loading…
Differential activation of mitogen-activated protein kinase signalling pathways by isometric contractions in isolated slow- and fast-twitch rat skeletal muscle
Activation of mitogen‐activated protein (MAP) kinases has been implicated in the signal transduction pathways linking exercise to adaptive changes of muscle protein expression. In the present study, we investigated whether contractions of isolated muscles induced phosphorylation of extracellular sig...
Saved in:
Published in: | Acta physiologica Scandinavica 2000-09, Vol.170 (1), p.45-49 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Activation of mitogen‐activated protein (MAP) kinases has been implicated in the signal transduction pathways linking exercise to adaptive changes of muscle protein expression. In the present study, we investigated whether contractions of isolated muscles induced phosphorylation of extracellular signal‐regulated kinase 1 and 2 (ERK1/2) and p38 MAPK in a fibre‐type dependent manner. Slow‐twitch (soleus) and fast‐twitch (epitrochlearis, extensor digitorum longus) rat skeletal muscles were exposed to intermittent tetanic stimulation. Compared with the contralateral non‐stimulated muscle, contractions increased ERK1/2 phosphorylation to the same extent in fast‐ and slow‐twitch muscles. Significant increase in phosphorylation of p38 MAPK was observed in the fast‐twitch muscles only. The total amount of ERK1/2 and p38 MAPK proteins was higher in the slow‐twitch soleus muscle. In conclusion, MAP kinase signalling pathways are differentially activated and expressed in slow‐ and fast‐twitch muscles. In addition, this activation is owing to muscle contraction per se and do not demand additional external influence. |
---|---|
ISSN: | 0001-6772 1365-201X |
DOI: | 10.1046/j.1365-201x.2000.00752.x |