Loading…

Galanin and learning

A number of studies indicate that galanin (GAL) is a potent modulator of basal acetylcholine release in the rat forebrain e.g. in the cholinergic neurons of the septo-hippocampal projections. Thus, GAL perfused through the microdialysis probe decreased basal acetylcholine release in the ventral hipp...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 1999-11, Vol.848 (1-2), p.174-182
Main Authors: Ögren, Sven Ove, Schött, Pär A, Kehr, Jan, Misane, Ilga, Razani, Haleh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A number of studies indicate that galanin (GAL) is a potent modulator of basal acetylcholine release in the rat forebrain e.g. in the cholinergic neurons of the septo-hippocampal projections. Thus, GAL perfused through the microdialysis probe decreased basal acetylcholine release in the ventral hippocampus, while it enhanced acetylcholine release in the dorsal hippocampus. This finding indicates that GAL may act via different mechanisms within the subsystems of the hippocampus. This hypothesis has received support from studies using the Morris swim maze, a learning task dependent on hippocampal mechanisms. GAL (3 nmol/rat) infused into the ventral hippocampus impaired spatial learning acquisition, while it tended to facilitate when injected into the dorsal hippocampus. However, the effects of GAL on acetylcholine release and on spatial learning, which are due to activation of GAL-receptors, appear to be indirectly mediated possibly via noradrenaline transmission. GAL is also a potent inhibitor of mesencephalic 5-HT neurotransmission in vivo. These findings are discussed in relation to the role of acetylcholine and serotonin in cognition.
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(99)01973-3