Loading…
Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis
Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve pred...
Saved in:
Published in: | Aging (Albany, NY.) NY.), 2023-06, Vol.15 (12), p.5240-5265 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53 |
container_end_page | 5265 |
container_issue | 12 |
container_start_page | 5240 |
container_title | Aging (Albany, NY.) |
container_volume | 15 |
creator | Salignon, Jérôme Faridani, Omid R Miliotis, Tasso Janssens, Georges E Chen, Ping Zarrouki, Bader Sandberg, Rickard Davidsson, Pia Riedel, Christian G |
description | Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve predictions. Here, we explored this at the level of proteins and small RNAs in 103 human blood plasma samples. First, we used a two-step mass spectrometry approach measuring 612 proteins to select and quantify 21 proteins that changed in abundance with age. Notably, proteins increasing with age were enriched for components of the complement system. Next, we used small RNA sequencing to select and quantify a set of 315 small RNAs that changed in abundance with age. Most of these were microRNAs (miRNAs), downregulated with age, and predicted to target genes related to growth, cancer, and senescence. Finally, we used the collected data to build age-predictive models. Among the different types of molecules, proteins yielded the most accurate model (R² = 0.59 ± 0.02), followed by miRNAs as the best-performing class of small RNAs (R² = 0.54 ± 0.02). Interestingly, the use of protein and miRNA data together improved predictions (R
= 0.70 ± 0.01). Future work using larger sample sizes and a validation dataset will be necessary to confirm these results. Nevertheless, our study suggests that combining proteomic and miRNA data yields superior age predictions, possibly by capturing a broader range of age-related physiological changes. It will be interesting to determine if combining different molecular data types works as a general strategy to improve future aging clocks. |
doi_str_mv | 10.18632/aging.204787 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_633426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828361204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS1ERT_gyBX5yCXF9sROzAWtKqBIVStVcLYcZ7I1OHGwk1b97zHdpbQnj2Z-nvdGj5C3nJ3yVoH4YLd-2p4KVjdt84IccV3LqpatfvmkPiTHOf9kTElZq1fkEBqoudZwROxmi3RO2Hu3-DjRIcWR3qyjnWgXYuzpHGweLV1zUSlgXDCO3lE79bT0Q6DXlxva28V-pJa6OM422cXfYiFsuM8-vyYHgw0Z3-zfE_Ljy-fvZ-fVxdXXb2ebi8rVQi2VbKDVknUamUAuB6GEFiDFMHAJqnWuXNjqjjdCYQe6r2sQyLpB9E70YpBwQqrd3nyH89qZOfnRpnsTrTf71q9SoVEARbHwn3Z8mYzYO5yWZMOzb88nk78x23hrOAMApv5ueL_fkOLvFfNiRp8dhmAnjGs2ohUtKF6M_zfnUsw54fCow5l5yNE85Gh2ORb-3VNzj_S_4OAPvRGa8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828361204</pqid></control><display><type>article</type><title>Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis</title><source>PubMed (Medline)</source><creator>Salignon, Jérôme ; Faridani, Omid R ; Miliotis, Tasso ; Janssens, Georges E ; Chen, Ping ; Zarrouki, Bader ; Sandberg, Rickard ; Davidsson, Pia ; Riedel, Christian G</creator><creatorcontrib>Salignon, Jérôme ; Faridani, Omid R ; Miliotis, Tasso ; Janssens, Georges E ; Chen, Ping ; Zarrouki, Bader ; Sandberg, Rickard ; Davidsson, Pia ; Riedel, Christian G</creatorcontrib><description>Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve predictions. Here, we explored this at the level of proteins and small RNAs in 103 human blood plasma samples. First, we used a two-step mass spectrometry approach measuring 612 proteins to select and quantify 21 proteins that changed in abundance with age. Notably, proteins increasing with age were enriched for components of the complement system. Next, we used small RNA sequencing to select and quantify a set of 315 small RNAs that changed in abundance with age. Most of these were microRNAs (miRNAs), downregulated with age, and predicted to target genes related to growth, cancer, and senescence. Finally, we used the collected data to build age-predictive models. Among the different types of molecules, proteins yielded the most accurate model (R² = 0.59 ± 0.02), followed by miRNAs as the best-performing class of small RNAs (R² = 0.54 ± 0.02). Interestingly, the use of protein and miRNA data together improved predictions (R
= 0.70 ± 0.01). Future work using larger sample sizes and a validation dataset will be necessary to confirm these results. Nevertheless, our study suggests that combining proteomic and miRNA data yields superior age predictions, possibly by capturing a broader range of age-related physiological changes. It will be interesting to determine if combining different molecular data types works as a general strategy to improve future aging clocks.</description><identifier>ISSN: 1945-4589</identifier><identifier>EISSN: 1945-4589</identifier><identifier>DOI: 10.18632/aging.204787</identifier><identifier>PMID: 37341993</identifier><language>eng</language><publisher>United States: Impact Journals</publisher><subject>Base Sequence ; Humans ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Plasma ; Proteins - genetics ; Proteomics ; Research Paper ; Sequence Analysis, RNA</subject><ispartof>Aging (Albany, NY.), 2023-06, Vol.15 (12), p.5240-5265</ispartof><rights>Copyright: © 2023 Salignon et al.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53</citedby><cites>FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333066/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333066/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27906,27907,53773,53775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37341993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:153326777$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Salignon, Jérôme</creatorcontrib><creatorcontrib>Faridani, Omid R</creatorcontrib><creatorcontrib>Miliotis, Tasso</creatorcontrib><creatorcontrib>Janssens, Georges E</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Zarrouki, Bader</creatorcontrib><creatorcontrib>Sandberg, Rickard</creatorcontrib><creatorcontrib>Davidsson, Pia</creatorcontrib><creatorcontrib>Riedel, Christian G</creatorcontrib><title>Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis</title><title>Aging (Albany, NY.)</title><addtitle>Aging (Albany NY)</addtitle><description>Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve predictions. Here, we explored this at the level of proteins and small RNAs in 103 human blood plasma samples. First, we used a two-step mass spectrometry approach measuring 612 proteins to select and quantify 21 proteins that changed in abundance with age. Notably, proteins increasing with age were enriched for components of the complement system. Next, we used small RNA sequencing to select and quantify a set of 315 small RNAs that changed in abundance with age. Most of these were microRNAs (miRNAs), downregulated with age, and predicted to target genes related to growth, cancer, and senescence. Finally, we used the collected data to build age-predictive models. Among the different types of molecules, proteins yielded the most accurate model (R² = 0.59 ± 0.02), followed by miRNAs as the best-performing class of small RNAs (R² = 0.54 ± 0.02). Interestingly, the use of protein and miRNA data together improved predictions (R
= 0.70 ± 0.01). Future work using larger sample sizes and a validation dataset will be necessary to confirm these results. Nevertheless, our study suggests that combining proteomic and miRNA data yields superior age predictions, possibly by capturing a broader range of age-related physiological changes. It will be interesting to determine if combining different molecular data types works as a general strategy to improve future aging clocks.</description><subject>Base Sequence</subject><subject>Humans</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Plasma</subject><subject>Proteins - genetics</subject><subject>Proteomics</subject><subject>Research Paper</subject><subject>Sequence Analysis, RNA</subject><issn>1945-4589</issn><issn>1945-4589</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkc1v1DAQxS1ERT_gyBX5yCXF9sROzAWtKqBIVStVcLYcZ7I1OHGwk1b97zHdpbQnj2Z-nvdGj5C3nJ3yVoH4YLd-2p4KVjdt84IccV3LqpatfvmkPiTHOf9kTElZq1fkEBqoudZwROxmi3RO2Hu3-DjRIcWR3qyjnWgXYuzpHGweLV1zUSlgXDCO3lE79bT0Q6DXlxva28V-pJa6OM422cXfYiFsuM8-vyYHgw0Z3-zfE_Ljy-fvZ-fVxdXXb2ebi8rVQi2VbKDVknUamUAuB6GEFiDFMHAJqnWuXNjqjjdCYQe6r2sQyLpB9E70YpBwQqrd3nyH89qZOfnRpnsTrTf71q9SoVEARbHwn3Z8mYzYO5yWZMOzb88nk78x23hrOAMApv5ueL_fkOLvFfNiRp8dhmAnjGs2ohUtKF6M_zfnUsw54fCow5l5yNE85Gh2ORb-3VNzj_S_4OAPvRGa8g</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>Salignon, Jérôme</creator><creator>Faridani, Omid R</creator><creator>Miliotis, Tasso</creator><creator>Janssens, Georges E</creator><creator>Chen, Ping</creator><creator>Zarrouki, Bader</creator><creator>Sandberg, Rickard</creator><creator>Davidsson, Pia</creator><creator>Riedel, Christian G</creator><general>Impact Journals</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20230620</creationdate><title>Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis</title><author>Salignon, Jérôme ; Faridani, Omid R ; Miliotis, Tasso ; Janssens, Georges E ; Chen, Ping ; Zarrouki, Bader ; Sandberg, Rickard ; Davidsson, Pia ; Riedel, Christian G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Base Sequence</topic><topic>Humans</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Plasma</topic><topic>Proteins - genetics</topic><topic>Proteomics</topic><topic>Research Paper</topic><topic>Sequence Analysis, RNA</topic><toplevel>online_resources</toplevel><creatorcontrib>Salignon, Jérôme</creatorcontrib><creatorcontrib>Faridani, Omid R</creatorcontrib><creatorcontrib>Miliotis, Tasso</creatorcontrib><creatorcontrib>Janssens, Georges E</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Zarrouki, Bader</creatorcontrib><creatorcontrib>Sandberg, Rickard</creatorcontrib><creatorcontrib>Davidsson, Pia</creatorcontrib><creatorcontrib>Riedel, Christian G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Aging (Albany, NY.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salignon, Jérôme</au><au>Faridani, Omid R</au><au>Miliotis, Tasso</au><au>Janssens, Georges E</au><au>Chen, Ping</au><au>Zarrouki, Bader</au><au>Sandberg, Rickard</au><au>Davidsson, Pia</au><au>Riedel, Christian G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis</atitle><jtitle>Aging (Albany, NY.)</jtitle><addtitle>Aging (Albany NY)</addtitle><date>2023-06-20</date><risdate>2023</risdate><volume>15</volume><issue>12</issue><spage>5240</spage><epage>5265</epage><pages>5240-5265</pages><issn>1945-4589</issn><eissn>1945-4589</eissn><abstract>Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve predictions. Here, we explored this at the level of proteins and small RNAs in 103 human blood plasma samples. First, we used a two-step mass spectrometry approach measuring 612 proteins to select and quantify 21 proteins that changed in abundance with age. Notably, proteins increasing with age were enriched for components of the complement system. Next, we used small RNA sequencing to select and quantify a set of 315 small RNAs that changed in abundance with age. Most of these were microRNAs (miRNAs), downregulated with age, and predicted to target genes related to growth, cancer, and senescence. Finally, we used the collected data to build age-predictive models. Among the different types of molecules, proteins yielded the most accurate model (R² = 0.59 ± 0.02), followed by miRNAs as the best-performing class of small RNAs (R² = 0.54 ± 0.02). Interestingly, the use of protein and miRNA data together improved predictions (R
= 0.70 ± 0.01). Future work using larger sample sizes and a validation dataset will be necessary to confirm these results. Nevertheless, our study suggests that combining proteomic and miRNA data yields superior age predictions, possibly by capturing a broader range of age-related physiological changes. It will be interesting to determine if combining different molecular data types works as a general strategy to improve future aging clocks.</abstract><cop>United States</cop><pub>Impact Journals</pub><pmid>37341993</pmid><doi>10.18632/aging.204787</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1945-4589 |
ispartof | Aging (Albany, NY.), 2023-06, Vol.15 (12), p.5240-5265 |
issn | 1945-4589 1945-4589 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_633426 |
source | PubMed (Medline) |
subjects | Base Sequence Humans MicroRNAs - genetics MicroRNAs - metabolism Plasma Proteins - genetics Proteomics Research Paper Sequence Analysis, RNA |
title | Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Age%20prediction%20from%20human%20blood%20plasma%20using%20proteomic%20and%20small%20RNA%20data:%20a%20comparative%20analysis&rft.jtitle=Aging%20(Albany,%20NY.)&rft.au=Salignon,%20J%C3%A9r%C3%B4me&rft.date=2023-06-20&rft.volume=15&rft.issue=12&rft.spage=5240&rft.epage=5265&rft.pages=5240-5265&rft.issn=1945-4589&rft.eissn=1945-4589&rft_id=info:doi/10.18632/aging.204787&rft_dat=%3Cproquest_swepu%3E2828361204%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828361204&rft_id=info:pmid/37341993&rfr_iscdi=true |