Loading…

Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis

Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve pred...

Full description

Saved in:
Bibliographic Details
Published in:Aging (Albany, NY.) NY.), 2023-06, Vol.15 (12), p.5240-5265
Main Authors: Salignon, Jérôme, Faridani, Omid R, Miliotis, Tasso, Janssens, Georges E, Chen, Ping, Zarrouki, Bader, Sandberg, Rickard, Davidsson, Pia, Riedel, Christian G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53
cites cdi_FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53
container_end_page 5265
container_issue 12
container_start_page 5240
container_title Aging (Albany, NY.)
container_volume 15
creator Salignon, Jérôme
Faridani, Omid R
Miliotis, Tasso
Janssens, Georges E
Chen, Ping
Zarrouki, Bader
Sandberg, Rickard
Davidsson, Pia
Riedel, Christian G
description Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve predictions. Here, we explored this at the level of proteins and small RNAs in 103 human blood plasma samples. First, we used a two-step mass spectrometry approach measuring 612 proteins to select and quantify 21 proteins that changed in abundance with age. Notably, proteins increasing with age were enriched for components of the complement system. Next, we used small RNA sequencing to select and quantify a set of 315 small RNAs that changed in abundance with age. Most of these were microRNAs (miRNAs), downregulated with age, and predicted to target genes related to growth, cancer, and senescence. Finally, we used the collected data to build age-predictive models. Among the different types of molecules, proteins yielded the most accurate model (R² = 0.59 ± 0.02), followed by miRNAs as the best-performing class of small RNAs (R² = 0.54 ± 0.02). Interestingly, the use of protein and miRNA data together improved predictions (R = 0.70 ± 0.01). Future work using larger sample sizes and a validation dataset will be necessary to confirm these results. Nevertheless, our study suggests that combining proteomic and miRNA data yields superior age predictions, possibly by capturing a broader range of age-related physiological changes. It will be interesting to determine if combining different molecular data types works as a general strategy to improve future aging clocks.
doi_str_mv 10.18632/aging.204787
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_633426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828361204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS1ERT_gyBX5yCXF9sROzAWtKqBIVStVcLYcZ7I1OHGwk1b97zHdpbQnj2Z-nvdGj5C3nJ3yVoH4YLd-2p4KVjdt84IccV3LqpatfvmkPiTHOf9kTElZq1fkEBqoudZwROxmi3RO2Hu3-DjRIcWR3qyjnWgXYuzpHGweLV1zUSlgXDCO3lE79bT0Q6DXlxva28V-pJa6OM422cXfYiFsuM8-vyYHgw0Z3-zfE_Ljy-fvZ-fVxdXXb2ebi8rVQi2VbKDVknUamUAuB6GEFiDFMHAJqnWuXNjqjjdCYQe6r2sQyLpB9E70YpBwQqrd3nyH89qZOfnRpnsTrTf71q9SoVEARbHwn3Z8mYzYO5yWZMOzb88nk78x23hrOAMApv5ueL_fkOLvFfNiRp8dhmAnjGs2ohUtKF6M_zfnUsw54fCow5l5yNE85Gh2ORb-3VNzj_S_4OAPvRGa8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828361204</pqid></control><display><type>article</type><title>Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis</title><source>PubMed (Medline)</source><creator>Salignon, Jérôme ; Faridani, Omid R ; Miliotis, Tasso ; Janssens, Georges E ; Chen, Ping ; Zarrouki, Bader ; Sandberg, Rickard ; Davidsson, Pia ; Riedel, Christian G</creator><creatorcontrib>Salignon, Jérôme ; Faridani, Omid R ; Miliotis, Tasso ; Janssens, Georges E ; Chen, Ping ; Zarrouki, Bader ; Sandberg, Rickard ; Davidsson, Pia ; Riedel, Christian G</creatorcontrib><description>Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve predictions. Here, we explored this at the level of proteins and small RNAs in 103 human blood plasma samples. First, we used a two-step mass spectrometry approach measuring 612 proteins to select and quantify 21 proteins that changed in abundance with age. Notably, proteins increasing with age were enriched for components of the complement system. Next, we used small RNA sequencing to select and quantify a set of 315 small RNAs that changed in abundance with age. Most of these were microRNAs (miRNAs), downregulated with age, and predicted to target genes related to growth, cancer, and senescence. Finally, we used the collected data to build age-predictive models. Among the different types of molecules, proteins yielded the most accurate model (R² = 0.59 ± 0.02), followed by miRNAs as the best-performing class of small RNAs (R² = 0.54 ± 0.02). Interestingly, the use of protein and miRNA data together improved predictions (R = 0.70 ± 0.01). Future work using larger sample sizes and a validation dataset will be necessary to confirm these results. Nevertheless, our study suggests that combining proteomic and miRNA data yields superior age predictions, possibly by capturing a broader range of age-related physiological changes. It will be interesting to determine if combining different molecular data types works as a general strategy to improve future aging clocks.</description><identifier>ISSN: 1945-4589</identifier><identifier>EISSN: 1945-4589</identifier><identifier>DOI: 10.18632/aging.204787</identifier><identifier>PMID: 37341993</identifier><language>eng</language><publisher>United States: Impact Journals</publisher><subject>Base Sequence ; Humans ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Plasma ; Proteins - genetics ; Proteomics ; Research Paper ; Sequence Analysis, RNA</subject><ispartof>Aging (Albany, NY.), 2023-06, Vol.15 (12), p.5240-5265</ispartof><rights>Copyright: © 2023 Salignon et al.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53</citedby><cites>FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333066/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10333066/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27906,27907,53773,53775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37341993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:153326777$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Salignon, Jérôme</creatorcontrib><creatorcontrib>Faridani, Omid R</creatorcontrib><creatorcontrib>Miliotis, Tasso</creatorcontrib><creatorcontrib>Janssens, Georges E</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Zarrouki, Bader</creatorcontrib><creatorcontrib>Sandberg, Rickard</creatorcontrib><creatorcontrib>Davidsson, Pia</creatorcontrib><creatorcontrib>Riedel, Christian G</creatorcontrib><title>Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis</title><title>Aging (Albany, NY.)</title><addtitle>Aging (Albany NY)</addtitle><description>Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve predictions. Here, we explored this at the level of proteins and small RNAs in 103 human blood plasma samples. First, we used a two-step mass spectrometry approach measuring 612 proteins to select and quantify 21 proteins that changed in abundance with age. Notably, proteins increasing with age were enriched for components of the complement system. Next, we used small RNA sequencing to select and quantify a set of 315 small RNAs that changed in abundance with age. Most of these were microRNAs (miRNAs), downregulated with age, and predicted to target genes related to growth, cancer, and senescence. Finally, we used the collected data to build age-predictive models. Among the different types of molecules, proteins yielded the most accurate model (R² = 0.59 ± 0.02), followed by miRNAs as the best-performing class of small RNAs (R² = 0.54 ± 0.02). Interestingly, the use of protein and miRNA data together improved predictions (R = 0.70 ± 0.01). Future work using larger sample sizes and a validation dataset will be necessary to confirm these results. Nevertheless, our study suggests that combining proteomic and miRNA data yields superior age predictions, possibly by capturing a broader range of age-related physiological changes. It will be interesting to determine if combining different molecular data types works as a general strategy to improve future aging clocks.</description><subject>Base Sequence</subject><subject>Humans</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Plasma</subject><subject>Proteins - genetics</subject><subject>Proteomics</subject><subject>Research Paper</subject><subject>Sequence Analysis, RNA</subject><issn>1945-4589</issn><issn>1945-4589</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkc1v1DAQxS1ERT_gyBX5yCXF9sROzAWtKqBIVStVcLYcZ7I1OHGwk1b97zHdpbQnj2Z-nvdGj5C3nJ3yVoH4YLd-2p4KVjdt84IccV3LqpatfvmkPiTHOf9kTElZq1fkEBqoudZwROxmi3RO2Hu3-DjRIcWR3qyjnWgXYuzpHGweLV1zUSlgXDCO3lE79bT0Q6DXlxva28V-pJa6OM422cXfYiFsuM8-vyYHgw0Z3-zfE_Ljy-fvZ-fVxdXXb2ebi8rVQi2VbKDVknUamUAuB6GEFiDFMHAJqnWuXNjqjjdCYQe6r2sQyLpB9E70YpBwQqrd3nyH89qZOfnRpnsTrTf71q9SoVEARbHwn3Z8mYzYO5yWZMOzb88nk78x23hrOAMApv5ueL_fkOLvFfNiRp8dhmAnjGs2ohUtKF6M_zfnUsw54fCow5l5yNE85Gh2ORb-3VNzj_S_4OAPvRGa8g</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>Salignon, Jérôme</creator><creator>Faridani, Omid R</creator><creator>Miliotis, Tasso</creator><creator>Janssens, Georges E</creator><creator>Chen, Ping</creator><creator>Zarrouki, Bader</creator><creator>Sandberg, Rickard</creator><creator>Davidsson, Pia</creator><creator>Riedel, Christian G</creator><general>Impact Journals</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20230620</creationdate><title>Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis</title><author>Salignon, Jérôme ; Faridani, Omid R ; Miliotis, Tasso ; Janssens, Georges E ; Chen, Ping ; Zarrouki, Bader ; Sandberg, Rickard ; Davidsson, Pia ; Riedel, Christian G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Base Sequence</topic><topic>Humans</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Plasma</topic><topic>Proteins - genetics</topic><topic>Proteomics</topic><topic>Research Paper</topic><topic>Sequence Analysis, RNA</topic><toplevel>online_resources</toplevel><creatorcontrib>Salignon, Jérôme</creatorcontrib><creatorcontrib>Faridani, Omid R</creatorcontrib><creatorcontrib>Miliotis, Tasso</creatorcontrib><creatorcontrib>Janssens, Georges E</creatorcontrib><creatorcontrib>Chen, Ping</creatorcontrib><creatorcontrib>Zarrouki, Bader</creatorcontrib><creatorcontrib>Sandberg, Rickard</creatorcontrib><creatorcontrib>Davidsson, Pia</creatorcontrib><creatorcontrib>Riedel, Christian G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Aging (Albany, NY.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salignon, Jérôme</au><au>Faridani, Omid R</au><au>Miliotis, Tasso</au><au>Janssens, Georges E</au><au>Chen, Ping</au><au>Zarrouki, Bader</au><au>Sandberg, Rickard</au><au>Davidsson, Pia</au><au>Riedel, Christian G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis</atitle><jtitle>Aging (Albany, NY.)</jtitle><addtitle>Aging (Albany NY)</addtitle><date>2023-06-20</date><risdate>2023</risdate><volume>15</volume><issue>12</issue><spage>5240</spage><epage>5265</epage><pages>5240-5265</pages><issn>1945-4589</issn><eissn>1945-4589</eissn><abstract>Aging clocks, built from comprehensive molecular data, have emerged as promising tools in medicine, forensics, and ecological research. However, few studies have compared the suitability of different molecular data types to predict age in the same cohort and whether combining them would improve predictions. Here, we explored this at the level of proteins and small RNAs in 103 human blood plasma samples. First, we used a two-step mass spectrometry approach measuring 612 proteins to select and quantify 21 proteins that changed in abundance with age. Notably, proteins increasing with age were enriched for components of the complement system. Next, we used small RNA sequencing to select and quantify a set of 315 small RNAs that changed in abundance with age. Most of these were microRNAs (miRNAs), downregulated with age, and predicted to target genes related to growth, cancer, and senescence. Finally, we used the collected data to build age-predictive models. Among the different types of molecules, proteins yielded the most accurate model (R² = 0.59 ± 0.02), followed by miRNAs as the best-performing class of small RNAs (R² = 0.54 ± 0.02). Interestingly, the use of protein and miRNA data together improved predictions (R = 0.70 ± 0.01). Future work using larger sample sizes and a validation dataset will be necessary to confirm these results. Nevertheless, our study suggests that combining proteomic and miRNA data yields superior age predictions, possibly by capturing a broader range of age-related physiological changes. It will be interesting to determine if combining different molecular data types works as a general strategy to improve future aging clocks.</abstract><cop>United States</cop><pub>Impact Journals</pub><pmid>37341993</pmid><doi>10.18632/aging.204787</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1945-4589
ispartof Aging (Albany, NY.), 2023-06, Vol.15 (12), p.5240-5265
issn 1945-4589
1945-4589
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_633426
source PubMed (Medline)
subjects Base Sequence
Humans
MicroRNAs - genetics
MicroRNAs - metabolism
Plasma
Proteins - genetics
Proteomics
Research Paper
Sequence Analysis, RNA
title Age prediction from human blood plasma using proteomic and small RNA data: a comparative analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Age%20prediction%20from%20human%20blood%20plasma%20using%20proteomic%20and%20small%20RNA%20data:%20a%20comparative%20analysis&rft.jtitle=Aging%20(Albany,%20NY.)&rft.au=Salignon,%20J%C3%A9r%C3%B4me&rft.date=2023-06-20&rft.volume=15&rft.issue=12&rft.spage=5240&rft.epage=5265&rft.pages=5240-5265&rft.issn=1945-4589&rft.eissn=1945-4589&rft_id=info:doi/10.18632/aging.204787&rft_dat=%3Cproquest_swepu%3E2828361204%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-5738950b9e02e15f26292352ff15368cc20489b1726eb39d4432e0bf2dc2d2f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2828361204&rft_id=info:pmid/37341993&rfr_iscdi=true