Loading…

Regional lung targeting with a fluticasone/salmeterol aerosol using a bolus breath hold method of the PreciseInhale® system: A first evaluation in humans

In development of inhaled drugs- and formulations the measured concentration in the systemic circulation is often used as a surrogate for local dosimetry in the lungs. To further elucidate regional differences in the fate of drugs in the lungs, different aerodynamic sizes of aerosols have been used...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutical sciences 2024-05, Vol.196, p.106742-106742, Article 106742
Main Authors: Gerde, Per, Sjöberg, Carl-Olof, Bäckroos, Helen, Englund, Joakim, Wangheim, Marit, Litorp, Helena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In development of inhaled drugs- and formulations the measured concentration in the systemic circulation is often used as a surrogate for local dosimetry in the lungs. To further elucidate regional differences in the fate of drugs in the lungs, different aerodynamic sizes of aerosols have been used to target major airway regions. An alternative approach to achieve regional targeting of aerosols, is to use a defined aerosol bolus together with a bolus breath hold strategy. A small volume of test aerosol is intercalated and stopped at different penetration depths, to achieve increased drug deposition at chosen lung locations. Drug permeation from the lung regions is then investigated by repeatedly sampling venous blood from the systemic circulation. The PreciseInhale® (PI) exposure platform was developed to allow generation of aerosols from different sources, including clinical inhalers, into a holding chamber, for subsequent use with alternative exposure modules in vitro and in vivo. In the current first-in-human study was investigated the feasibility of a new clinical exposure module added to the PI system. By extracting aerosol puffs from a medical inhaler for subsequent delivery to volunteers, it was possible to administer whole lung exposures, as well as regional targeting exposures. Aerosols containing 250 µg/25 µg fluticasone propionate (FP)/salmeterol xinafoate (SMX) were automatically actuated and extracted from the pressurized Metered Dose Inhaler (pMDI) Evohaler Seretide forte into the PI system's holding chamber, then administered to the healthy volunteers using controlled flowrate and volume exposure cycles. Two main comparisons were made by measuring the systemic PK response: I. One label dose directly from the inhaler to the subject was compared to the same dose extracted from the pMDI into the PI system and then administered to the subject. II A small aerosol bolus at a penetration level in the central airways was compared to a small aerosol bolus at a penetration level in the peripheral lung. When one inhaler dose was administered via the PI system, the absorbed dose, expressed as AUC24, was approximately twice as high and the CV was less than half, compared to direct inhalation from the same pMDI. Bolus breath hold targeting of drugs from the same aerosol mixture to the peripheral lung and the central airways showed a difference in their appearance in the systemic circulation. Normalized to the same deposited dose, SMX had a 57 % higher Cma
ISSN:0928-0987
1879-0720
1879-0720
DOI:10.1016/j.ejps.2024.106742