Loading…

miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction

Background and Purpose MicroRNA (miR)‐210 function in endothelial cells and its role in diabetes‐associated endothelial dysfunction are not fully understood. We aimed to characterize the miR‐210 function in endothelial cells and study its therapeutic potential in diabetes. Experimental Approach Two...

Full description

Saved in:
Bibliographic Details
Published in:British journal of pharmacology 2025-01, Vol.182 (2), p.417-431
Main Authors: Collado, Aida, Jiao, Tong, Kontidou, Eftychia, Carvalho, Lucas Rannier Ribeiro Antonino, Chernogubova, Ekaterina, Yang, Jiangning, Zaccagnini, Germana, Zhao, Allan, Tengbom, John, Zheng, Xiaowei, Rethi, Bence, Alvarsson, Michael, Catrina, Sergiu‐Bogdan, Mahdi, Ali, Carlström, Mattias, Martelli, Fabio, Pernow, John, Zhou, Zhichao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3169-ce3bcd284b5f2fc8fe736a8affa0408cafc230e8532f7726be7c95a521938e833
container_end_page 431
container_issue 2
container_start_page 417
container_title British journal of pharmacology
container_volume 182
creator Collado, Aida
Jiao, Tong
Kontidou, Eftychia
Carvalho, Lucas Rannier Ribeiro Antonino
Chernogubova, Ekaterina
Yang, Jiangning
Zaccagnini, Germana
Zhao, Allan
Tengbom, John
Zheng, Xiaowei
Rethi, Bence
Alvarsson, Michael
Catrina, Sergiu‐Bogdan
Mahdi, Ali
Carlström, Mattias
Martelli, Fabio
Pernow, John
Zhou, Zhichao
description Background and Purpose MicroRNA (miR)‐210 function in endothelial cells and its role in diabetes‐associated endothelial dysfunction are not fully understood. We aimed to characterize the miR‐210 function in endothelial cells and study its therapeutic potential in diabetes. Experimental Approach Two different diabetic mouse models (db/db and Western diet‐induced), miR‐210 knockout and transgenic mice, isolated vessels and human endothelial cells were used. Key Results miR‐210 levels were lower in aortas isolated from db/db than in control mice. Endothelium‐dependent relaxation (EDR) was impaired in aortas from miR‐210 knockout mice, and this was restored by inhibiting miR‐210 downstream protein tyrosine phosphatase 1B (PTP1B), mitochondrial glycerol‐3‐phosphate dehydrogenase 2 (GPD2), and mitochondrial oxidative stress. Inhibition of these pathways also improved EDR in both diabetic mouse models. High glucose reduced miR‐210 levels in endothelial cells and impaired EDR in mouse aortas, effects that were reversed by overexpressing miR‐210. However, plasma miR‐210 levels were not affected in individuals with type 2 diabetes (T2D) following improved glycaemic status. Of note, genetic overexpression using miR‐210 transgenic mice and pharmacological overexpression using miR‐210 mimic in vivo ameliorated endothelial dysfunction in both diabetic mouse models by decreasing PTP1B, GPD2 and oxidative stress. Genetic overexpression of miR‐210 altered the aortic transcriptome, decreasing genes in pathways involved in oxidative stress. miR‐210 mimic restored decreased nitric oxide production by high glucose in endothelial cells. Conclusion and Implications This study unravels the mechanisms by which down‐regulated miR‐210 by high glucose induces endothelial dysfunction in T2D and demonstrates that miR‐210 serves as a novel therapeutic target. LINKED ARTICLES This article is part of a themed issue Non‐coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc
doi_str_mv 10.1111/bph.17329
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_886715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116676544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3169-ce3bcd284b5f2fc8fe736a8affa0408cafc230e8532f7726be7c95a521938e833</originalsourceid><addsrcrecordid>eNp10c1q3DAUBWBREprJtIu-QDB0kyyc6MeW5GUT2qQwkDC0a3EtXzWaeGzXshlml0foM-ZJosSTWRQiBBLSx0HiEPKF0XMWx0XZ3Z8zJXjxgcxYpmSaC80OyIxSqlLGtD4ixyGsKI2XKv9IjkSRUa6omJHl2i-fHv9xRhMICSTDPfbQ4Th4mwzQ_8Eh8U1SeShxwBAlhNBaDwNWCTZVG33toU6qbXBjYwffNp_IoYM64OfdOie_f3z_dXWTLm6vf159W6RWMFmkFkVpK66zMnfcWe1QCQkanAOaUW3BWS4o6lxwpxSXJSpb5JBzVgiNWog5SafcsMFuLE3X-zX0W9OCN7ujh7hDo7VULI_-dPJd3_4dMQxm7YPFuoYG2zEYwZiUSuZZFunX_-iqHfsm_iaqTNBMijjn5GxStm9D6NHtn8CoeSnGxGLMazHRnuwSx3KN1V6-NRHBxQQ2vsbt-0nm8u5minwGYNGZIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143046346</pqid></control><display><type>article</type><title>miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Collado, Aida ; Jiao, Tong ; Kontidou, Eftychia ; Carvalho, Lucas Rannier Ribeiro Antonino ; Chernogubova, Ekaterina ; Yang, Jiangning ; Zaccagnini, Germana ; Zhao, Allan ; Tengbom, John ; Zheng, Xiaowei ; Rethi, Bence ; Alvarsson, Michael ; Catrina, Sergiu‐Bogdan ; Mahdi, Ali ; Carlström, Mattias ; Martelli, Fabio ; Pernow, John ; Zhou, Zhichao</creator><creatorcontrib>Collado, Aida ; Jiao, Tong ; Kontidou, Eftychia ; Carvalho, Lucas Rannier Ribeiro Antonino ; Chernogubova, Ekaterina ; Yang, Jiangning ; Zaccagnini, Germana ; Zhao, Allan ; Tengbom, John ; Zheng, Xiaowei ; Rethi, Bence ; Alvarsson, Michael ; Catrina, Sergiu‐Bogdan ; Mahdi, Ali ; Carlström, Mattias ; Martelli, Fabio ; Pernow, John ; Zhou, Zhichao</creatorcontrib><description>Background and Purpose MicroRNA (miR)‐210 function in endothelial cells and its role in diabetes‐associated endothelial dysfunction are not fully understood. We aimed to characterize the miR‐210 function in endothelial cells and study its therapeutic potential in diabetes. Experimental Approach Two different diabetic mouse models (db/db and Western diet‐induced), miR‐210 knockout and transgenic mice, isolated vessels and human endothelial cells were used. Key Results miR‐210 levels were lower in aortas isolated from db/db than in control mice. Endothelium‐dependent relaxation (EDR) was impaired in aortas from miR‐210 knockout mice, and this was restored by inhibiting miR‐210 downstream protein tyrosine phosphatase 1B (PTP1B), mitochondrial glycerol‐3‐phosphate dehydrogenase 2 (GPD2), and mitochondrial oxidative stress. Inhibition of these pathways also improved EDR in both diabetic mouse models. High glucose reduced miR‐210 levels in endothelial cells and impaired EDR in mouse aortas, effects that were reversed by overexpressing miR‐210. However, plasma miR‐210 levels were not affected in individuals with type 2 diabetes (T2D) following improved glycaemic status. Of note, genetic overexpression using miR‐210 transgenic mice and pharmacological overexpression using miR‐210 mimic in vivo ameliorated endothelial dysfunction in both diabetic mouse models by decreasing PTP1B, GPD2 and oxidative stress. Genetic overexpression of miR‐210 altered the aortic transcriptome, decreasing genes in pathways involved in oxidative stress. miR‐210 mimic restored decreased nitric oxide production by high glucose in endothelial cells. Conclusion and Implications This study unravels the mechanisms by which down‐regulated miR‐210 by high glucose induces endothelial dysfunction in T2D and demonstrates that miR‐210 serves as a novel therapeutic target. LINKED ARTICLES This article is part of a themed issue Non‐coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc</description><identifier>ISSN: 0007-1188</identifier><identifier>ISSN: 1476-5381</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1111/bph.17329</identifier><identifier>PMID: 39402703</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animal models ; Animals ; Aorta - metabolism ; Cell culture ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Type 2 - metabolism ; Endothelial cells ; Endothelial Cells - metabolism ; endothelial dysfunction ; Endothelium ; Endothelium, Vascular - metabolism ; Glucose ; high glucose ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; miR‐210 ; Nitric oxide ; Oxidative Stress ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 - antagonists &amp; inhibitors ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism ; Protein-tyrosine-phosphatase ; Therapeutic targets ; Transcriptomes ; Transgenic animals ; Transgenic mice ; type 2 diabetes</subject><ispartof>British journal of pharmacology, 2025-01, Vol.182 (2), p.417-431</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd on behalf of British Pharmacological Society.</rights><rights>2024 The Author(s). British Journal of Pharmacology published by John Wiley &amp; Sons Ltd on behalf of British Pharmacological Society.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3169-ce3bcd284b5f2fc8fe736a8affa0408cafc230e8532f7726be7c95a521938e833</cites><orcidid>0000-0002-5107-6529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39402703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:159798928$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Collado, Aida</creatorcontrib><creatorcontrib>Jiao, Tong</creatorcontrib><creatorcontrib>Kontidou, Eftychia</creatorcontrib><creatorcontrib>Carvalho, Lucas Rannier Ribeiro Antonino</creatorcontrib><creatorcontrib>Chernogubova, Ekaterina</creatorcontrib><creatorcontrib>Yang, Jiangning</creatorcontrib><creatorcontrib>Zaccagnini, Germana</creatorcontrib><creatorcontrib>Zhao, Allan</creatorcontrib><creatorcontrib>Tengbom, John</creatorcontrib><creatorcontrib>Zheng, Xiaowei</creatorcontrib><creatorcontrib>Rethi, Bence</creatorcontrib><creatorcontrib>Alvarsson, Michael</creatorcontrib><creatorcontrib>Catrina, Sergiu‐Bogdan</creatorcontrib><creatorcontrib>Mahdi, Ali</creatorcontrib><creatorcontrib>Carlström, Mattias</creatorcontrib><creatorcontrib>Martelli, Fabio</creatorcontrib><creatorcontrib>Pernow, John</creatorcontrib><creatorcontrib>Zhou, Zhichao</creatorcontrib><title>miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction</title><title>British journal of pharmacology</title><addtitle>Br J Pharmacol</addtitle><description>Background and Purpose MicroRNA (miR)‐210 function in endothelial cells and its role in diabetes‐associated endothelial dysfunction are not fully understood. We aimed to characterize the miR‐210 function in endothelial cells and study its therapeutic potential in diabetes. Experimental Approach Two different diabetic mouse models (db/db and Western diet‐induced), miR‐210 knockout and transgenic mice, isolated vessels and human endothelial cells were used. Key Results miR‐210 levels were lower in aortas isolated from db/db than in control mice. Endothelium‐dependent relaxation (EDR) was impaired in aortas from miR‐210 knockout mice, and this was restored by inhibiting miR‐210 downstream protein tyrosine phosphatase 1B (PTP1B), mitochondrial glycerol‐3‐phosphate dehydrogenase 2 (GPD2), and mitochondrial oxidative stress. Inhibition of these pathways also improved EDR in both diabetic mouse models. High glucose reduced miR‐210 levels in endothelial cells and impaired EDR in mouse aortas, effects that were reversed by overexpressing miR‐210. However, plasma miR‐210 levels were not affected in individuals with type 2 diabetes (T2D) following improved glycaemic status. Of note, genetic overexpression using miR‐210 transgenic mice and pharmacological overexpression using miR‐210 mimic in vivo ameliorated endothelial dysfunction in both diabetic mouse models by decreasing PTP1B, GPD2 and oxidative stress. Genetic overexpression of miR‐210 altered the aortic transcriptome, decreasing genes in pathways involved in oxidative stress. miR‐210 mimic restored decreased nitric oxide production by high glucose in endothelial cells. Conclusion and Implications This study unravels the mechanisms by which down‐regulated miR‐210 by high glucose induces endothelial dysfunction in T2D and demonstrates that miR‐210 serves as a novel therapeutic target. LINKED ARTICLES This article is part of a themed issue Non‐coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc</description><subject>Animal models</subject><subject>Animals</subject><subject>Aorta - metabolism</subject><subject>Cell culture</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>endothelial dysfunction</subject><subject>Endothelium</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Glucose</subject><subject>high glucose</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>miR‐210</subject><subject>Nitric oxide</subject><subject>Oxidative Stress</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - antagonists &amp; inhibitors</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism</subject><subject>Protein-tyrosine-phosphatase</subject><subject>Therapeutic targets</subject><subject>Transcriptomes</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><subject>type 2 diabetes</subject><issn>0007-1188</issn><issn>1476-5381</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10c1q3DAUBWBREprJtIu-QDB0kyyc6MeW5GUT2qQwkDC0a3EtXzWaeGzXshlml0foM-ZJosSTWRQiBBLSx0HiEPKF0XMWx0XZ3Z8zJXjxgcxYpmSaC80OyIxSqlLGtD4ixyGsKI2XKv9IjkSRUa6omJHl2i-fHv9xRhMICSTDPfbQ4Th4mwzQ_8Eh8U1SeShxwBAlhNBaDwNWCTZVG33toU6qbXBjYwffNp_IoYM64OfdOie_f3z_dXWTLm6vf159W6RWMFmkFkVpK66zMnfcWe1QCQkanAOaUW3BWS4o6lxwpxSXJSpb5JBzVgiNWog5SafcsMFuLE3X-zX0W9OCN7ujh7hDo7VULI_-dPJd3_4dMQxm7YPFuoYG2zEYwZiUSuZZFunX_-iqHfsm_iaqTNBMijjn5GxStm9D6NHtn8CoeSnGxGLMazHRnuwSx3KN1V6-NRHBxQQ2vsbt-0nm8u5minwGYNGZIQ</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Collado, Aida</creator><creator>Jiao, Tong</creator><creator>Kontidou, Eftychia</creator><creator>Carvalho, Lucas Rannier Ribeiro Antonino</creator><creator>Chernogubova, Ekaterina</creator><creator>Yang, Jiangning</creator><creator>Zaccagnini, Germana</creator><creator>Zhao, Allan</creator><creator>Tengbom, John</creator><creator>Zheng, Xiaowei</creator><creator>Rethi, Bence</creator><creator>Alvarsson, Michael</creator><creator>Catrina, Sergiu‐Bogdan</creator><creator>Mahdi, Ali</creator><creator>Carlström, Mattias</creator><creator>Martelli, Fabio</creator><creator>Pernow, John</creator><creator>Zhou, Zhichao</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-5107-6529</orcidid></search><sort><creationdate>202501</creationdate><title>miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction</title><author>Collado, Aida ; Jiao, Tong ; Kontidou, Eftychia ; Carvalho, Lucas Rannier Ribeiro Antonino ; Chernogubova, Ekaterina ; Yang, Jiangning ; Zaccagnini, Germana ; Zhao, Allan ; Tengbom, John ; Zheng, Xiaowei ; Rethi, Bence ; Alvarsson, Michael ; Catrina, Sergiu‐Bogdan ; Mahdi, Ali ; Carlström, Mattias ; Martelli, Fabio ; Pernow, John ; Zhou, Zhichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3169-ce3bcd284b5f2fc8fe736a8affa0408cafc230e8532f7726be7c95a521938e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Aorta - metabolism</topic><topic>Cell culture</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>endothelial dysfunction</topic><topic>Endothelium</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Glucose</topic><topic>high glucose</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>miR‐210</topic><topic>Nitric oxide</topic><topic>Oxidative Stress</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - antagonists &amp; inhibitors</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism</topic><topic>Protein-tyrosine-phosphatase</topic><topic>Therapeutic targets</topic><topic>Transcriptomes</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><topic>type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collado, Aida</creatorcontrib><creatorcontrib>Jiao, Tong</creatorcontrib><creatorcontrib>Kontidou, Eftychia</creatorcontrib><creatorcontrib>Carvalho, Lucas Rannier Ribeiro Antonino</creatorcontrib><creatorcontrib>Chernogubova, Ekaterina</creatorcontrib><creatorcontrib>Yang, Jiangning</creatorcontrib><creatorcontrib>Zaccagnini, Germana</creatorcontrib><creatorcontrib>Zhao, Allan</creatorcontrib><creatorcontrib>Tengbom, John</creatorcontrib><creatorcontrib>Zheng, Xiaowei</creatorcontrib><creatorcontrib>Rethi, Bence</creatorcontrib><creatorcontrib>Alvarsson, Michael</creatorcontrib><creatorcontrib>Catrina, Sergiu‐Bogdan</creatorcontrib><creatorcontrib>Mahdi, Ali</creatorcontrib><creatorcontrib>Carlström, Mattias</creatorcontrib><creatorcontrib>Martelli, Fabio</creatorcontrib><creatorcontrib>Pernow, John</creatorcontrib><creatorcontrib>Zhou, Zhichao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Free Backfiles(OpenAccess)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collado, Aida</au><au>Jiao, Tong</au><au>Kontidou, Eftychia</au><au>Carvalho, Lucas Rannier Ribeiro Antonino</au><au>Chernogubova, Ekaterina</au><au>Yang, Jiangning</au><au>Zaccagnini, Germana</au><au>Zhao, Allan</au><au>Tengbom, John</au><au>Zheng, Xiaowei</au><au>Rethi, Bence</au><au>Alvarsson, Michael</au><au>Catrina, Sergiu‐Bogdan</au><au>Mahdi, Ali</au><au>Carlström, Mattias</au><au>Martelli, Fabio</au><au>Pernow, John</au><au>Zhou, Zhichao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction</atitle><jtitle>British journal of pharmacology</jtitle><addtitle>Br J Pharmacol</addtitle><date>2025-01</date><risdate>2025</risdate><volume>182</volume><issue>2</issue><spage>417</spage><epage>431</epage><pages>417-431</pages><issn>0007-1188</issn><issn>1476-5381</issn><eissn>1476-5381</eissn><abstract>Background and Purpose MicroRNA (miR)‐210 function in endothelial cells and its role in diabetes‐associated endothelial dysfunction are not fully understood. We aimed to characterize the miR‐210 function in endothelial cells and study its therapeutic potential in diabetes. Experimental Approach Two different diabetic mouse models (db/db and Western diet‐induced), miR‐210 knockout and transgenic mice, isolated vessels and human endothelial cells were used. Key Results miR‐210 levels were lower in aortas isolated from db/db than in control mice. Endothelium‐dependent relaxation (EDR) was impaired in aortas from miR‐210 knockout mice, and this was restored by inhibiting miR‐210 downstream protein tyrosine phosphatase 1B (PTP1B), mitochondrial glycerol‐3‐phosphate dehydrogenase 2 (GPD2), and mitochondrial oxidative stress. Inhibition of these pathways also improved EDR in both diabetic mouse models. High glucose reduced miR‐210 levels in endothelial cells and impaired EDR in mouse aortas, effects that were reversed by overexpressing miR‐210. However, plasma miR‐210 levels were not affected in individuals with type 2 diabetes (T2D) following improved glycaemic status. Of note, genetic overexpression using miR‐210 transgenic mice and pharmacological overexpression using miR‐210 mimic in vivo ameliorated endothelial dysfunction in both diabetic mouse models by decreasing PTP1B, GPD2 and oxidative stress. Genetic overexpression of miR‐210 altered the aortic transcriptome, decreasing genes in pathways involved in oxidative stress. miR‐210 mimic restored decreased nitric oxide production by high glucose in endothelial cells. Conclusion and Implications This study unravels the mechanisms by which down‐regulated miR‐210 by high glucose induces endothelial dysfunction in T2D and demonstrates that miR‐210 serves as a novel therapeutic target. LINKED ARTICLES This article is part of a themed issue Non‐coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39402703</pmid><doi>10.1111/bph.17329</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5107-6529</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1188
ispartof British journal of pharmacology, 2025-01, Vol.182 (2), p.417-431
issn 0007-1188
1476-5381
1476-5381
language eng
recordid cdi_swepub_primary_oai_swepub_ki_se_886715
source Wiley-Blackwell Read & Publish Collection
subjects Animal models
Animals
Aorta - metabolism
Cell culture
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Type 2 - metabolism
Endothelial cells
Endothelial Cells - metabolism
endothelial dysfunction
Endothelium
Endothelium, Vascular - metabolism
Glucose
high glucose
Humans
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
miR‐210
Nitric oxide
Oxidative Stress
Protein Tyrosine Phosphatase, Non-Receptor Type 1 - antagonists & inhibitors
Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics
Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism
Protein-tyrosine-phosphatase
Therapeutic targets
Transcriptomes
Transgenic animals
Transgenic mice
type 2 diabetes
title miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR%E2%80%90210%20as%20a%20therapeutic%20target%20in%20diabetes%E2%80%90associated%20endothelial%20dysfunction&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Collado,%20Aida&rft.date=2025-01&rft.volume=182&rft.issue=2&rft.spage=417&rft.epage=431&rft.pages=417-431&rft.issn=0007-1188&rft.eissn=1476-5381&rft_id=info:doi/10.1111/bph.17329&rft_dat=%3Cproquest_swepu%3E3116676544%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3169-ce3bcd284b5f2fc8fe736a8affa0408cafc230e8532f7726be7c95a521938e833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3143046346&rft_id=info:pmid/39402703&rfr_iscdi=true