Loading…
miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction
Background and Purpose MicroRNA (miR)‐210 function in endothelial cells and its role in diabetes‐associated endothelial dysfunction are not fully understood. We aimed to characterize the miR‐210 function in endothelial cells and study its therapeutic potential in diabetes. Experimental Approach Two...
Saved in:
Published in: | British journal of pharmacology 2025-01, Vol.182 (2), p.417-431 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3169-ce3bcd284b5f2fc8fe736a8affa0408cafc230e8532f7726be7c95a521938e833 |
container_end_page | 431 |
container_issue | 2 |
container_start_page | 417 |
container_title | British journal of pharmacology |
container_volume | 182 |
creator | Collado, Aida Jiao, Tong Kontidou, Eftychia Carvalho, Lucas Rannier Ribeiro Antonino Chernogubova, Ekaterina Yang, Jiangning Zaccagnini, Germana Zhao, Allan Tengbom, John Zheng, Xiaowei Rethi, Bence Alvarsson, Michael Catrina, Sergiu‐Bogdan Mahdi, Ali Carlström, Mattias Martelli, Fabio Pernow, John Zhou, Zhichao |
description | Background and Purpose
MicroRNA (miR)‐210 function in endothelial cells and its role in diabetes‐associated endothelial dysfunction are not fully understood. We aimed to characterize the miR‐210 function in endothelial cells and study its therapeutic potential in diabetes.
Experimental Approach
Two different diabetic mouse models (db/db and Western diet‐induced), miR‐210 knockout and transgenic mice, isolated vessels and human endothelial cells were used.
Key Results
miR‐210 levels were lower in aortas isolated from db/db than in control mice. Endothelium‐dependent relaxation (EDR) was impaired in aortas from miR‐210 knockout mice, and this was restored by inhibiting miR‐210 downstream protein tyrosine phosphatase 1B (PTP1B), mitochondrial glycerol‐3‐phosphate dehydrogenase 2 (GPD2), and mitochondrial oxidative stress. Inhibition of these pathways also improved EDR in both diabetic mouse models. High glucose reduced miR‐210 levels in endothelial cells and impaired EDR in mouse aortas, effects that were reversed by overexpressing miR‐210. However, plasma miR‐210 levels were not affected in individuals with type 2 diabetes (T2D) following improved glycaemic status. Of note, genetic overexpression using miR‐210 transgenic mice and pharmacological overexpression using miR‐210 mimic in vivo ameliorated endothelial dysfunction in both diabetic mouse models by decreasing PTP1B, GPD2 and oxidative stress. Genetic overexpression of miR‐210 altered the aortic transcriptome, decreasing genes in pathways involved in oxidative stress. miR‐210 mimic restored decreased nitric oxide production by high glucose in endothelial cells.
Conclusion and Implications
This study unravels the mechanisms by which down‐regulated miR‐210 by high glucose induces endothelial dysfunction in T2D and demonstrates that miR‐210 serves as a novel therapeutic target.
LINKED ARTICLES
This article is part of a themed issue Non‐coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc |
doi_str_mv | 10.1111/bph.17329 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_swepub_ki_se_886715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116676544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3169-ce3bcd284b5f2fc8fe736a8affa0408cafc230e8532f7726be7c95a521938e833</originalsourceid><addsrcrecordid>eNp10c1q3DAUBWBREprJtIu-QDB0kyyc6MeW5GUT2qQwkDC0a3EtXzWaeGzXshlml0foM-ZJosSTWRQiBBLSx0HiEPKF0XMWx0XZ3Z8zJXjxgcxYpmSaC80OyIxSqlLGtD4ixyGsKI2XKv9IjkSRUa6omJHl2i-fHv9xRhMICSTDPfbQ4Th4mwzQ_8Eh8U1SeShxwBAlhNBaDwNWCTZVG33toU6qbXBjYwffNp_IoYM64OfdOie_f3z_dXWTLm6vf159W6RWMFmkFkVpK66zMnfcWe1QCQkanAOaUW3BWS4o6lxwpxSXJSpb5JBzVgiNWog5SafcsMFuLE3X-zX0W9OCN7ujh7hDo7VULI_-dPJd3_4dMQxm7YPFuoYG2zEYwZiUSuZZFunX_-iqHfsm_iaqTNBMijjn5GxStm9D6NHtn8CoeSnGxGLMazHRnuwSx3KN1V6-NRHBxQQ2vsbt-0nm8u5minwGYNGZIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143046346</pqid></control><display><type>article</type><title>miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Collado, Aida ; Jiao, Tong ; Kontidou, Eftychia ; Carvalho, Lucas Rannier Ribeiro Antonino ; Chernogubova, Ekaterina ; Yang, Jiangning ; Zaccagnini, Germana ; Zhao, Allan ; Tengbom, John ; Zheng, Xiaowei ; Rethi, Bence ; Alvarsson, Michael ; Catrina, Sergiu‐Bogdan ; Mahdi, Ali ; Carlström, Mattias ; Martelli, Fabio ; Pernow, John ; Zhou, Zhichao</creator><creatorcontrib>Collado, Aida ; Jiao, Tong ; Kontidou, Eftychia ; Carvalho, Lucas Rannier Ribeiro Antonino ; Chernogubova, Ekaterina ; Yang, Jiangning ; Zaccagnini, Germana ; Zhao, Allan ; Tengbom, John ; Zheng, Xiaowei ; Rethi, Bence ; Alvarsson, Michael ; Catrina, Sergiu‐Bogdan ; Mahdi, Ali ; Carlström, Mattias ; Martelli, Fabio ; Pernow, John ; Zhou, Zhichao</creatorcontrib><description>Background and Purpose
MicroRNA (miR)‐210 function in endothelial cells and its role in diabetes‐associated endothelial dysfunction are not fully understood. We aimed to characterize the miR‐210 function in endothelial cells and study its therapeutic potential in diabetes.
Experimental Approach
Two different diabetic mouse models (db/db and Western diet‐induced), miR‐210 knockout and transgenic mice, isolated vessels and human endothelial cells were used.
Key Results
miR‐210 levels were lower in aortas isolated from db/db than in control mice. Endothelium‐dependent relaxation (EDR) was impaired in aortas from miR‐210 knockout mice, and this was restored by inhibiting miR‐210 downstream protein tyrosine phosphatase 1B (PTP1B), mitochondrial glycerol‐3‐phosphate dehydrogenase 2 (GPD2), and mitochondrial oxidative stress. Inhibition of these pathways also improved EDR in both diabetic mouse models. High glucose reduced miR‐210 levels in endothelial cells and impaired EDR in mouse aortas, effects that were reversed by overexpressing miR‐210. However, plasma miR‐210 levels were not affected in individuals with type 2 diabetes (T2D) following improved glycaemic status. Of note, genetic overexpression using miR‐210 transgenic mice and pharmacological overexpression using miR‐210 mimic in vivo ameliorated endothelial dysfunction in both diabetic mouse models by decreasing PTP1B, GPD2 and oxidative stress. Genetic overexpression of miR‐210 altered the aortic transcriptome, decreasing genes in pathways involved in oxidative stress. miR‐210 mimic restored decreased nitric oxide production by high glucose in endothelial cells.
Conclusion and Implications
This study unravels the mechanisms by which down‐regulated miR‐210 by high glucose induces endothelial dysfunction in T2D and demonstrates that miR‐210 serves as a novel therapeutic target.
LINKED ARTICLES
This article is part of a themed issue Non‐coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc</description><identifier>ISSN: 0007-1188</identifier><identifier>ISSN: 1476-5381</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1111/bph.17329</identifier><identifier>PMID: 39402703</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Animal models ; Animals ; Aorta - metabolism ; Cell culture ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Type 2 - metabolism ; Endothelial cells ; Endothelial Cells - metabolism ; endothelial dysfunction ; Endothelium ; Endothelium, Vascular - metabolism ; Glucose ; high glucose ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; miR‐210 ; Nitric oxide ; Oxidative Stress ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 - antagonists & inhibitors ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics ; Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism ; Protein-tyrosine-phosphatase ; Therapeutic targets ; Transcriptomes ; Transgenic animals ; Transgenic mice ; type 2 diabetes</subject><ispartof>British journal of pharmacology, 2025-01, Vol.182 (2), p.417-431</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.</rights><rights>2024 The Author(s). British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3169-ce3bcd284b5f2fc8fe736a8affa0408cafc230e8532f7726be7c95a521938e833</cites><orcidid>0000-0002-5107-6529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39402703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:159798928$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Collado, Aida</creatorcontrib><creatorcontrib>Jiao, Tong</creatorcontrib><creatorcontrib>Kontidou, Eftychia</creatorcontrib><creatorcontrib>Carvalho, Lucas Rannier Ribeiro Antonino</creatorcontrib><creatorcontrib>Chernogubova, Ekaterina</creatorcontrib><creatorcontrib>Yang, Jiangning</creatorcontrib><creatorcontrib>Zaccagnini, Germana</creatorcontrib><creatorcontrib>Zhao, Allan</creatorcontrib><creatorcontrib>Tengbom, John</creatorcontrib><creatorcontrib>Zheng, Xiaowei</creatorcontrib><creatorcontrib>Rethi, Bence</creatorcontrib><creatorcontrib>Alvarsson, Michael</creatorcontrib><creatorcontrib>Catrina, Sergiu‐Bogdan</creatorcontrib><creatorcontrib>Mahdi, Ali</creatorcontrib><creatorcontrib>Carlström, Mattias</creatorcontrib><creatorcontrib>Martelli, Fabio</creatorcontrib><creatorcontrib>Pernow, John</creatorcontrib><creatorcontrib>Zhou, Zhichao</creatorcontrib><title>miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction</title><title>British journal of pharmacology</title><addtitle>Br J Pharmacol</addtitle><description>Background and Purpose
MicroRNA (miR)‐210 function in endothelial cells and its role in diabetes‐associated endothelial dysfunction are not fully understood. We aimed to characterize the miR‐210 function in endothelial cells and study its therapeutic potential in diabetes.
Experimental Approach
Two different diabetic mouse models (db/db and Western diet‐induced), miR‐210 knockout and transgenic mice, isolated vessels and human endothelial cells were used.
Key Results
miR‐210 levels were lower in aortas isolated from db/db than in control mice. Endothelium‐dependent relaxation (EDR) was impaired in aortas from miR‐210 knockout mice, and this was restored by inhibiting miR‐210 downstream protein tyrosine phosphatase 1B (PTP1B), mitochondrial glycerol‐3‐phosphate dehydrogenase 2 (GPD2), and mitochondrial oxidative stress. Inhibition of these pathways also improved EDR in both diabetic mouse models. High glucose reduced miR‐210 levels in endothelial cells and impaired EDR in mouse aortas, effects that were reversed by overexpressing miR‐210. However, plasma miR‐210 levels were not affected in individuals with type 2 diabetes (T2D) following improved glycaemic status. Of note, genetic overexpression using miR‐210 transgenic mice and pharmacological overexpression using miR‐210 mimic in vivo ameliorated endothelial dysfunction in both diabetic mouse models by decreasing PTP1B, GPD2 and oxidative stress. Genetic overexpression of miR‐210 altered the aortic transcriptome, decreasing genes in pathways involved in oxidative stress. miR‐210 mimic restored decreased nitric oxide production by high glucose in endothelial cells.
Conclusion and Implications
This study unravels the mechanisms by which down‐regulated miR‐210 by high glucose induces endothelial dysfunction in T2D and demonstrates that miR‐210 serves as a novel therapeutic target.
LINKED ARTICLES
This article is part of a themed issue Non‐coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc</description><subject>Animal models</subject><subject>Animals</subject><subject>Aorta - metabolism</subject><subject>Cell culture</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>endothelial dysfunction</subject><subject>Endothelium</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Glucose</subject><subject>high glucose</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>miR‐210</subject><subject>Nitric oxide</subject><subject>Oxidative Stress</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - antagonists & inhibitors</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism</subject><subject>Protein-tyrosine-phosphatase</subject><subject>Therapeutic targets</subject><subject>Transcriptomes</subject><subject>Transgenic animals</subject><subject>Transgenic mice</subject><subject>type 2 diabetes</subject><issn>0007-1188</issn><issn>1476-5381</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10c1q3DAUBWBREprJtIu-QDB0kyyc6MeW5GUT2qQwkDC0a3EtXzWaeGzXshlml0foM-ZJosSTWRQiBBLSx0HiEPKF0XMWx0XZ3Z8zJXjxgcxYpmSaC80OyIxSqlLGtD4ixyGsKI2XKv9IjkSRUa6omJHl2i-fHv9xRhMICSTDPfbQ4Th4mwzQ_8Eh8U1SeShxwBAlhNBaDwNWCTZVG33toU6qbXBjYwffNp_IoYM64OfdOie_f3z_dXWTLm6vf159W6RWMFmkFkVpK66zMnfcWe1QCQkanAOaUW3BWS4o6lxwpxSXJSpb5JBzVgiNWog5SafcsMFuLE3X-zX0W9OCN7ujh7hDo7VULI_-dPJd3_4dMQxm7YPFuoYG2zEYwZiUSuZZFunX_-iqHfsm_iaqTNBMijjn5GxStm9D6NHtn8CoeSnGxGLMazHRnuwSx3KN1V6-NRHBxQQ2vsbt-0nm8u5minwGYNGZIQ</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Collado, Aida</creator><creator>Jiao, Tong</creator><creator>Kontidou, Eftychia</creator><creator>Carvalho, Lucas Rannier Ribeiro Antonino</creator><creator>Chernogubova, Ekaterina</creator><creator>Yang, Jiangning</creator><creator>Zaccagnini, Germana</creator><creator>Zhao, Allan</creator><creator>Tengbom, John</creator><creator>Zheng, Xiaowei</creator><creator>Rethi, Bence</creator><creator>Alvarsson, Michael</creator><creator>Catrina, Sergiu‐Bogdan</creator><creator>Mahdi, Ali</creator><creator>Carlström, Mattias</creator><creator>Martelli, Fabio</creator><creator>Pernow, John</creator><creator>Zhou, Zhichao</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-5107-6529</orcidid></search><sort><creationdate>202501</creationdate><title>miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction</title><author>Collado, Aida ; Jiao, Tong ; Kontidou, Eftychia ; Carvalho, Lucas Rannier Ribeiro Antonino ; Chernogubova, Ekaterina ; Yang, Jiangning ; Zaccagnini, Germana ; Zhao, Allan ; Tengbom, John ; Zheng, Xiaowei ; Rethi, Bence ; Alvarsson, Michael ; Catrina, Sergiu‐Bogdan ; Mahdi, Ali ; Carlström, Mattias ; Martelli, Fabio ; Pernow, John ; Zhou, Zhichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3169-ce3bcd284b5f2fc8fe736a8affa0408cafc230e8532f7726be7c95a521938e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Aorta - metabolism</topic><topic>Cell culture</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>endothelial dysfunction</topic><topic>Endothelium</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Glucose</topic><topic>high glucose</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>miR‐210</topic><topic>Nitric oxide</topic><topic>Oxidative Stress</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - antagonists & inhibitors</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism</topic><topic>Protein-tyrosine-phosphatase</topic><topic>Therapeutic targets</topic><topic>Transcriptomes</topic><topic>Transgenic animals</topic><topic>Transgenic mice</topic><topic>type 2 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collado, Aida</creatorcontrib><creatorcontrib>Jiao, Tong</creatorcontrib><creatorcontrib>Kontidou, Eftychia</creatorcontrib><creatorcontrib>Carvalho, Lucas Rannier Ribeiro Antonino</creatorcontrib><creatorcontrib>Chernogubova, Ekaterina</creatorcontrib><creatorcontrib>Yang, Jiangning</creatorcontrib><creatorcontrib>Zaccagnini, Germana</creatorcontrib><creatorcontrib>Zhao, Allan</creatorcontrib><creatorcontrib>Tengbom, John</creatorcontrib><creatorcontrib>Zheng, Xiaowei</creatorcontrib><creatorcontrib>Rethi, Bence</creatorcontrib><creatorcontrib>Alvarsson, Michael</creatorcontrib><creatorcontrib>Catrina, Sergiu‐Bogdan</creatorcontrib><creatorcontrib>Mahdi, Ali</creatorcontrib><creatorcontrib>Carlström, Mattias</creatorcontrib><creatorcontrib>Martelli, Fabio</creatorcontrib><creatorcontrib>Pernow, John</creatorcontrib><creatorcontrib>Zhou, Zhichao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley-Blackwell Free Backfiles(OpenAccess)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collado, Aida</au><au>Jiao, Tong</au><au>Kontidou, Eftychia</au><au>Carvalho, Lucas Rannier Ribeiro Antonino</au><au>Chernogubova, Ekaterina</au><au>Yang, Jiangning</au><au>Zaccagnini, Germana</au><au>Zhao, Allan</au><au>Tengbom, John</au><au>Zheng, Xiaowei</au><au>Rethi, Bence</au><au>Alvarsson, Michael</au><au>Catrina, Sergiu‐Bogdan</au><au>Mahdi, Ali</au><au>Carlström, Mattias</au><au>Martelli, Fabio</au><au>Pernow, John</au><au>Zhou, Zhichao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction</atitle><jtitle>British journal of pharmacology</jtitle><addtitle>Br J Pharmacol</addtitle><date>2025-01</date><risdate>2025</risdate><volume>182</volume><issue>2</issue><spage>417</spage><epage>431</epage><pages>417-431</pages><issn>0007-1188</issn><issn>1476-5381</issn><eissn>1476-5381</eissn><abstract>Background and Purpose
MicroRNA (miR)‐210 function in endothelial cells and its role in diabetes‐associated endothelial dysfunction are not fully understood. We aimed to characterize the miR‐210 function in endothelial cells and study its therapeutic potential in diabetes.
Experimental Approach
Two different diabetic mouse models (db/db and Western diet‐induced), miR‐210 knockout and transgenic mice, isolated vessels and human endothelial cells were used.
Key Results
miR‐210 levels were lower in aortas isolated from db/db than in control mice. Endothelium‐dependent relaxation (EDR) was impaired in aortas from miR‐210 knockout mice, and this was restored by inhibiting miR‐210 downstream protein tyrosine phosphatase 1B (PTP1B), mitochondrial glycerol‐3‐phosphate dehydrogenase 2 (GPD2), and mitochondrial oxidative stress. Inhibition of these pathways also improved EDR in both diabetic mouse models. High glucose reduced miR‐210 levels in endothelial cells and impaired EDR in mouse aortas, effects that were reversed by overexpressing miR‐210. However, plasma miR‐210 levels were not affected in individuals with type 2 diabetes (T2D) following improved glycaemic status. Of note, genetic overexpression using miR‐210 transgenic mice and pharmacological overexpression using miR‐210 mimic in vivo ameliorated endothelial dysfunction in both diabetic mouse models by decreasing PTP1B, GPD2 and oxidative stress. Genetic overexpression of miR‐210 altered the aortic transcriptome, decreasing genes in pathways involved in oxidative stress. miR‐210 mimic restored decreased nitric oxide production by high glucose in endothelial cells.
Conclusion and Implications
This study unravels the mechanisms by which down‐regulated miR‐210 by high glucose induces endothelial dysfunction in T2D and demonstrates that miR‐210 serves as a novel therapeutic target.
LINKED ARTICLES
This article is part of a themed issue Non‐coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>39402703</pmid><doi>10.1111/bph.17329</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5107-6529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1188 |
ispartof | British journal of pharmacology, 2025-01, Vol.182 (2), p.417-431 |
issn | 0007-1188 1476-5381 1476-5381 |
language | eng |
recordid | cdi_swepub_primary_oai_swepub_ki_se_886715 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animal models Animals Aorta - metabolism Cell culture Diabetes Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Experimental - metabolism Diabetes Mellitus, Type 2 - metabolism Endothelial cells Endothelial Cells - metabolism endothelial dysfunction Endothelium Endothelium, Vascular - metabolism Glucose high glucose Humans Male Mice Mice, Inbred C57BL Mice, Knockout Mice, Transgenic MicroRNAs - genetics MicroRNAs - metabolism miRNA miR‐210 Nitric oxide Oxidative Stress Protein Tyrosine Phosphatase, Non-Receptor Type 1 - antagonists & inhibitors Protein Tyrosine Phosphatase, Non-Receptor Type 1 - genetics Protein Tyrosine Phosphatase, Non-Receptor Type 1 - metabolism Protein-tyrosine-phosphatase Therapeutic targets Transcriptomes Transgenic animals Transgenic mice type 2 diabetes |
title | miR‐210 as a therapeutic target in diabetes‐associated endothelial dysfunction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR%E2%80%90210%20as%20a%20therapeutic%20target%20in%20diabetes%E2%80%90associated%20endothelial%20dysfunction&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Collado,%20Aida&rft.date=2025-01&rft.volume=182&rft.issue=2&rft.spage=417&rft.epage=431&rft.pages=417-431&rft.issn=0007-1188&rft.eissn=1476-5381&rft_id=info:doi/10.1111/bph.17329&rft_dat=%3Cproquest_swepu%3E3116676544%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3169-ce3bcd284b5f2fc8fe736a8affa0408cafc230e8532f7726be7c95a521938e833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3143046346&rft_id=info:pmid/39402703&rfr_iscdi=true |