Loading…

Estimates for Fourier transform of measures supported on singular hypersurfaces

We consider hypersurfaces $S\subset \Bbb{R}^3$ with zero Gaussian curvature at every ordinary point with surface measure dS and define the surface measure $d_\mu = \psi(x)dS_(x)$ for smooth function ψ with compact support. We obtain uniform estimates for the Fourier transform of measures co...

Full description

Saved in:
Bibliographic Details
Published in:Turkish journal of mathematics 2007-01, Vol.31 (1), p.1-21
Main Author: IKROMOV, Isroil A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 21
container_issue 1
container_start_page 1
container_title Turkish journal of mathematics
container_volume 31
creator IKROMOV, Isroil A
description We consider hypersurfaces $S\subset \Bbb{R}^3$ with zero Gaussian curvature at every ordinary point with surface measure dS and define the surface measure $d_\mu = \psi(x)dS_(x)$ for smooth function ψ with compact support. We obtain uniform estimates for the Fourier transform of measures concentrated on such hypersurfaces. We show that due to the damping effect of the surface measure the Fourier transform decays faster than $O(|\xi|^{-1/h})$, where h is the height of the phase function. In particular, Fourier transform of measures supported on the exceptional surfaces decays in the order $O(|\xi|^{-1/2})(as |\xi|\rightarrow+\infty)$.
format article
fullrecord <record><control><sourceid>ulakbim</sourceid><recordid>TN_cdi_ulakbim_primary_74310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>74310</sourcerecordid><originalsourceid>FETCH-LOGICAL-s176t-23f0fdd34f9152e59409ec27d8c83daf1bde48c86fa92e1a528fb4a9cc98911f3</originalsourceid><addsrcrecordid>eNotj81KAzEUhYMoWKtv4CIvEMjfzCRLKa0KhW50XTLJve1o54fcmUXf3qCuzuHwcTjnhq2UkUbUyvrbXy-FlN7dsweiLym1sZVbscOW5q4PMxDHMfPduOQOMp9zGKgEPR-R9xBoyYWgZZrGPEPi48CpG07LJWR-vk6QC4AhAj2yOwwXgqd_XbPP3fZj8yb2h9f3zctekGrqWWiDElMyFr2qNFTeSg9RN8lFZ1JA1SawxdcYvAYVKu2wtcHH6J1XCs2aPf_1lgnfbdcfp1xu5OuxsUZJ8wPAeUt3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimates for Fourier transform of measures supported on singular hypersurfaces</title><source>EZB Electronic Journals Library</source><creator>IKROMOV, Isroil A</creator><creatorcontrib>IKROMOV, Isroil A</creatorcontrib><description>We consider hypersurfaces $S\subset \Bbb{R}^3$ with zero Gaussian curvature at every ordinary point with surface measure dS and define the surface measure $d_\mu = \psi(x)dS_(x)$ for smooth function &amp;#968; with compact support. We obtain uniform estimates for the Fourier transform of measures concentrated on such hypersurfaces. We show that due to the damping effect of the surface measure the Fourier transform decays faster than $O(|\xi|^{-1/h})$, where h is the height of the phase function. In particular, Fourier transform of measures supported on the exceptional surfaces decays in the order $O(|\xi|^{-1/2})(as |\xi|\rightarrow+\infty)$.</description><identifier>ISSN: 1300-0098</identifier><identifier>EISSN: 1303-6149</identifier><language>eng</language><publisher>TÜBİTAK</publisher><subject>Değer biçme ; estimate ; Fourier dönüşümü ; Fourier transformation ; Gauss eğriliği ; Gaussian curvature ; Hiperyüzey ; hypersurface ; Matematik ; Mathematics ; Regle yüzey ; Ruled surface</subject><ispartof>Turkish journal of mathematics, 2007-01, Vol.31 (1), p.1-21</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>IKROMOV, Isroil A</creatorcontrib><title>Estimates for Fourier transform of measures supported on singular hypersurfaces</title><title>Turkish journal of mathematics</title><description>We consider hypersurfaces $S\subset \Bbb{R}^3$ with zero Gaussian curvature at every ordinary point with surface measure dS and define the surface measure $d_\mu = \psi(x)dS_(x)$ for smooth function &amp;#968; with compact support. We obtain uniform estimates for the Fourier transform of measures concentrated on such hypersurfaces. We show that due to the damping effect of the surface measure the Fourier transform decays faster than $O(|\xi|^{-1/h})$, where h is the height of the phase function. In particular, Fourier transform of measures supported on the exceptional surfaces decays in the order $O(|\xi|^{-1/2})(as |\xi|\rightarrow+\infty)$.</description><subject>Değer biçme</subject><subject>estimate</subject><subject>Fourier dönüşümü</subject><subject>Fourier transformation</subject><subject>Gauss eğriliği</subject><subject>Gaussian curvature</subject><subject>Hiperyüzey</subject><subject>hypersurface</subject><subject>Matematik</subject><subject>Mathematics</subject><subject>Regle yüzey</subject><subject>Ruled surface</subject><issn>1300-0098</issn><issn>1303-6149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj81KAzEUhYMoWKtv4CIvEMjfzCRLKa0KhW50XTLJve1o54fcmUXf3qCuzuHwcTjnhq2UkUbUyvrbXy-FlN7dsweiLym1sZVbscOW5q4PMxDHMfPduOQOMp9zGKgEPR-R9xBoyYWgZZrGPEPi48CpG07LJWR-vk6QC4AhAj2yOwwXgqd_XbPP3fZj8yb2h9f3zctekGrqWWiDElMyFr2qNFTeSg9RN8lFZ1JA1SawxdcYvAYVKu2wtcHH6J1XCs2aPf_1lgnfbdcfp1xu5OuxsUZJ8wPAeUt3</recordid><startdate>20070101</startdate><enddate>20070101</enddate><creator>IKROMOV, Isroil A</creator><general>TÜBİTAK</general><scope/></search><sort><creationdate>20070101</creationdate><title>Estimates for Fourier transform of measures supported on singular hypersurfaces</title><author>IKROMOV, Isroil A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s176t-23f0fdd34f9152e59409ec27d8c83daf1bde48c86fa92e1a528fb4a9cc98911f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Değer biçme</topic><topic>estimate</topic><topic>Fourier dönüşümü</topic><topic>Fourier transformation</topic><topic>Gauss eğriliği</topic><topic>Gaussian curvature</topic><topic>Hiperyüzey</topic><topic>hypersurface</topic><topic>Matematik</topic><topic>Mathematics</topic><topic>Regle yüzey</topic><topic>Ruled surface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>IKROMOV, Isroil A</creatorcontrib><jtitle>Turkish journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>IKROMOV, Isroil A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimates for Fourier transform of measures supported on singular hypersurfaces</atitle><jtitle>Turkish journal of mathematics</jtitle><date>2007-01-01</date><risdate>2007</risdate><volume>31</volume><issue>1</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1300-0098</issn><eissn>1303-6149</eissn><abstract>We consider hypersurfaces $S\subset \Bbb{R}^3$ with zero Gaussian curvature at every ordinary point with surface measure dS and define the surface measure $d_\mu = \psi(x)dS_(x)$ for smooth function &amp;#968; with compact support. We obtain uniform estimates for the Fourier transform of measures concentrated on such hypersurfaces. We show that due to the damping effect of the surface measure the Fourier transform decays faster than $O(|\xi|^{-1/h})$, where h is the height of the phase function. In particular, Fourier transform of measures supported on the exceptional surfaces decays in the order $O(|\xi|^{-1/2})(as |\xi|\rightarrow+\infty)$.</abstract><pub>TÜBİTAK</pub><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1300-0098
ispartof Turkish journal of mathematics, 2007-01, Vol.31 (1), p.1-21
issn 1300-0098
1303-6149
language eng
recordid cdi_ulakbim_primary_74310
source EZB Electronic Journals Library
subjects Değer biçme
estimate
Fourier dönüşümü
Fourier transformation
Gauss eğriliği
Gaussian curvature
Hiperyüzey
hypersurface
Matematik
Mathematics
Regle yüzey
Ruled surface
title Estimates for Fourier transform of measures supported on singular hypersurfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ulakbim&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimates%20for%20Fourier%20transform%20of%20measures%20supported%20on%20singular%20hypersurfaces&rft.jtitle=Turkish%20journal%20of%20mathematics&rft.au=IKROMOV,%20Isroil%20A&rft.date=2007-01-01&rft.volume=31&rft.issue=1&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1300-0098&rft.eissn=1303-6149&rft_id=info:doi/&rft_dat=%3Culakbim%3E74310%3C/ulakbim%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-s176t-23f0fdd34f9152e59409ec27d8c83daf1bde48c86fa92e1a528fb4a9cc98911f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true