Loading…

Transcriptional and posttranscriptional gene silencing are mechanistically related

Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [...

Full description

Saved in:
Bibliographic Details
Published in:Current biology 2001-03, Vol.11 (6), p.436-440
Main Authors: Sijen, Titia, Vijn, Irma, Rebocho, Alexandra, van Blokland, Rik, Roelofs, Dick, Mol, Joseph N.M., Kooter, Jan M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13
cites cdi_FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13
container_end_page 440
container_issue 6
container_start_page 436
container_title Current biology
container_volume 11
creator Sijen, Titia
Vijn, Irma
Rebocho, Alexandra
van Blokland, Rik
Roelofs, Dick
Mol, Joseph N.M.
Kooter, Jan M.
description Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1–4] or fortuitous production (R.v.B., unpublished data) of double-stranded RNA (dsRNA). TGS could be the result of DNA pairing [5], but could also be the result of dsRNA, as was shown by the dsRNA-induced inactivation of a transgenic promoter [6]. Here, we show that when targeting flower pigmentation genes in Petunia, transgenes expressing dsRNA can induce PTGS when coding sequences are used and TGS when promoter sequences are taken. For both types of silencing, small RNA species are found, which are thought to be dsRNA decay products [7] and determine the sequence specificity of the silencing process [8, 9]. Furthermore, silencing is accompanied by the methylation of DNA sequences that are homologous to dsRNA. DNA methylation is assumed to be essential for regulating TGS and important for reinforcing PTGS [10]. Therefore, we conclude that TGS and PTGS are mechanistically related. In addition, we show that dsRNA-induced TGS provides an efficient tool to generate gene knockouts, because not only does the TGS of a PTGS-inducing transgene fully revert the PTGS phenotype, but also an endogenous gene can be transcriptionally silenced by dsRNA corresponding to its promoter.
doi_str_mv 10.1016/S0960-9822(01)00116-6
format article
fullrecord <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_109345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982201001166</els_id><sourcerecordid>17860325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13</originalsourceid><addsrcrecordid>eNqFkVGL1TAQhYMo7nX1Jyh9En2oZto0SX0RWdxVWBB0fR7SZLpGctOatC777033XhR82acJ4TtzDnMYew78DXCQb7_xXvK6103zisNrzgFkLR-wHWjV11yI7iHb_UVO2JOcfxao0b18zE4A2vLuxI59vUomZpv8vPgpmlCZ6Kp5ysvy3_81RaqyDxStj9eVSVTtyf4w0efFWxPCbZUomIXcU_ZoNCHTs-M8Zd_PP16dfaovv1x8PvtwWduuk0stWi1JE-cW5EidGUGPjRssqc4ZMoOggfQoXaMaoUraVgmnVTuM_QBOWmhP2bvD3htTwpVQFDGaZH3GyXgMfkgm3eLNmjCGbczrkBF434quiF8exHOafq2UF9z7bCkEE2laMyrFN1dxLwhKS94228buANo05ZxoxDn5_ZYAOG6V4V1luPWBHPCuMpRF9-JosA57cv9Ux44K8P4AUDnmb08Js_WlBnI-kV3QTf4eiz9_Tal1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17860325</pqid></control><display><type>article</type><title>Transcriptional and posttranscriptional gene silencing are mechanistically related</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Sijen, Titia ; Vijn, Irma ; Rebocho, Alexandra ; van Blokland, Rik ; Roelofs, Dick ; Mol, Joseph N.M. ; Kooter, Jan M.</creator><creatorcontrib>Sijen, Titia ; Vijn, Irma ; Rebocho, Alexandra ; van Blokland, Rik ; Roelofs, Dick ; Mol, Joseph N.M. ; Kooter, Jan M.</creatorcontrib><description>Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1–4] or fortuitous production (R.v.B., unpublished data) of double-stranded RNA (dsRNA). TGS could be the result of DNA pairing [5], but could also be the result of dsRNA, as was shown by the dsRNA-induced inactivation of a transgenic promoter [6]. Here, we show that when targeting flower pigmentation genes in Petunia, transgenes expressing dsRNA can induce PTGS when coding sequences are used and TGS when promoter sequences are taken. For both types of silencing, small RNA species are found, which are thought to be dsRNA decay products [7] and determine the sequence specificity of the silencing process [8, 9]. Furthermore, silencing is accompanied by the methylation of DNA sequences that are homologous to dsRNA. DNA methylation is assumed to be essential for regulating TGS and important for reinforcing PTGS [10]. Therefore, we conclude that TGS and PTGS are mechanistically related. In addition, we show that dsRNA-induced TGS provides an efficient tool to generate gene knockouts, because not only does the TGS of a PTGS-inducing transgene fully revert the PTGS phenotype, but also an endogenous gene can be transcriptionally silenced by dsRNA corresponding to its promoter.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/S0960-9822(01)00116-6</identifier><identifier>PMID: 11301254</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Acyltransferases - genetics ; Alcohol Oxidoreductases - genetics ; EPS ; Gene Silencing ; Genes, Plant ; Hydro-Lyases - genetics ; Laboratorium voor Fytopathologie ; Laboratorium voor Phytopathologie ; Laboratory of Phytopathology ; Petunia ; posttranscriptional gene silencing ; RNA Processing, Post-Transcriptional ; RNA, Double-Stranded ; RNA, Plant ; Solanaceae - enzymology ; Solanaceae - genetics ; Transcription, Genetic ; transcriptional gene silencing ; transgenes</subject><ispartof>Current biology, 2001-03, Vol.11 (6), p.436-440</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13</citedby><cites>FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11301254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sijen, Titia</creatorcontrib><creatorcontrib>Vijn, Irma</creatorcontrib><creatorcontrib>Rebocho, Alexandra</creatorcontrib><creatorcontrib>van Blokland, Rik</creatorcontrib><creatorcontrib>Roelofs, Dick</creatorcontrib><creatorcontrib>Mol, Joseph N.M.</creatorcontrib><creatorcontrib>Kooter, Jan M.</creatorcontrib><title>Transcriptional and posttranscriptional gene silencing are mechanistically related</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1–4] or fortuitous production (R.v.B., unpublished data) of double-stranded RNA (dsRNA). TGS could be the result of DNA pairing [5], but could also be the result of dsRNA, as was shown by the dsRNA-induced inactivation of a transgenic promoter [6]. Here, we show that when targeting flower pigmentation genes in Petunia, transgenes expressing dsRNA can induce PTGS when coding sequences are used and TGS when promoter sequences are taken. For both types of silencing, small RNA species are found, which are thought to be dsRNA decay products [7] and determine the sequence specificity of the silencing process [8, 9]. Furthermore, silencing is accompanied by the methylation of DNA sequences that are homologous to dsRNA. DNA methylation is assumed to be essential for regulating TGS and important for reinforcing PTGS [10]. Therefore, we conclude that TGS and PTGS are mechanistically related. In addition, we show that dsRNA-induced TGS provides an efficient tool to generate gene knockouts, because not only does the TGS of a PTGS-inducing transgene fully revert the PTGS phenotype, but also an endogenous gene can be transcriptionally silenced by dsRNA corresponding to its promoter.</description><subject>Acyltransferases - genetics</subject><subject>Alcohol Oxidoreductases - genetics</subject><subject>EPS</subject><subject>Gene Silencing</subject><subject>Genes, Plant</subject><subject>Hydro-Lyases - genetics</subject><subject>Laboratorium voor Fytopathologie</subject><subject>Laboratorium voor Phytopathologie</subject><subject>Laboratory of Phytopathology</subject><subject>Petunia</subject><subject>posttranscriptional gene silencing</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Double-Stranded</subject><subject>RNA, Plant</subject><subject>Solanaceae - enzymology</subject><subject>Solanaceae - genetics</subject><subject>Transcription, Genetic</subject><subject>transcriptional gene silencing</subject><subject>transgenes</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkVGL1TAQhYMo7nX1Jyh9En2oZto0SX0RWdxVWBB0fR7SZLpGctOatC777033XhR82acJ4TtzDnMYew78DXCQb7_xXvK6103zisNrzgFkLR-wHWjV11yI7iHb_UVO2JOcfxao0b18zE4A2vLuxI59vUomZpv8vPgpmlCZ6Kp5ysvy3_81RaqyDxStj9eVSVTtyf4w0efFWxPCbZUomIXcU_ZoNCHTs-M8Zd_PP16dfaovv1x8PvtwWduuk0stWi1JE-cW5EidGUGPjRssqc4ZMoOggfQoXaMaoUraVgmnVTuM_QBOWmhP2bvD3htTwpVQFDGaZH3GyXgMfkgm3eLNmjCGbczrkBF434quiF8exHOafq2UF9z7bCkEE2laMyrFN1dxLwhKS94228buANo05ZxoxDn5_ZYAOG6V4V1luPWBHPCuMpRF9-JosA57cv9Ux44K8P4AUDnmb08Js_WlBnI-kV3QTf4eiz9_Tal1</recordid><startdate>20010320</startdate><enddate>20010320</enddate><creator>Sijen, Titia</creator><creator>Vijn, Irma</creator><creator>Rebocho, Alexandra</creator><creator>van Blokland, Rik</creator><creator>Roelofs, Dick</creator><creator>Mol, Joseph N.M.</creator><creator>Kooter, Jan M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>QVL</scope></search><sort><creationdate>20010320</creationdate><title>Transcriptional and posttranscriptional gene silencing are mechanistically related</title><author>Sijen, Titia ; Vijn, Irma ; Rebocho, Alexandra ; van Blokland, Rik ; Roelofs, Dick ; Mol, Joseph N.M. ; Kooter, Jan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acyltransferases - genetics</topic><topic>Alcohol Oxidoreductases - genetics</topic><topic>EPS</topic><topic>Gene Silencing</topic><topic>Genes, Plant</topic><topic>Hydro-Lyases - genetics</topic><topic>Laboratorium voor Fytopathologie</topic><topic>Laboratorium voor Phytopathologie</topic><topic>Laboratory of Phytopathology</topic><topic>Petunia</topic><topic>posttranscriptional gene silencing</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Double-Stranded</topic><topic>RNA, Plant</topic><topic>Solanaceae - enzymology</topic><topic>Solanaceae - genetics</topic><topic>Transcription, Genetic</topic><topic>transcriptional gene silencing</topic><topic>transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sijen, Titia</creatorcontrib><creatorcontrib>Vijn, Irma</creatorcontrib><creatorcontrib>Rebocho, Alexandra</creatorcontrib><creatorcontrib>van Blokland, Rik</creatorcontrib><creatorcontrib>Roelofs, Dick</creatorcontrib><creatorcontrib>Mol, Joseph N.M.</creatorcontrib><creatorcontrib>Kooter, Jan M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NARCIS:Publications</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sijen, Titia</au><au>Vijn, Irma</au><au>Rebocho, Alexandra</au><au>van Blokland, Rik</au><au>Roelofs, Dick</au><au>Mol, Joseph N.M.</au><au>Kooter, Jan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional and posttranscriptional gene silencing are mechanistically related</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2001-03-20</date><risdate>2001</risdate><volume>11</volume><issue>6</issue><spage>436</spage><epage>440</epage><pages>436-440</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1–4] or fortuitous production (R.v.B., unpublished data) of double-stranded RNA (dsRNA). TGS could be the result of DNA pairing [5], but could also be the result of dsRNA, as was shown by the dsRNA-induced inactivation of a transgenic promoter [6]. Here, we show that when targeting flower pigmentation genes in Petunia, transgenes expressing dsRNA can induce PTGS when coding sequences are used and TGS when promoter sequences are taken. For both types of silencing, small RNA species are found, which are thought to be dsRNA decay products [7] and determine the sequence specificity of the silencing process [8, 9]. Furthermore, silencing is accompanied by the methylation of DNA sequences that are homologous to dsRNA. DNA methylation is assumed to be essential for regulating TGS and important for reinforcing PTGS [10]. Therefore, we conclude that TGS and PTGS are mechanistically related. In addition, we show that dsRNA-induced TGS provides an efficient tool to generate gene knockouts, because not only does the TGS of a PTGS-inducing transgene fully revert the PTGS phenotype, but also an endogenous gene can be transcriptionally silenced by dsRNA corresponding to its promoter.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>11301254</pmid><doi>10.1016/S0960-9822(01)00116-6</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2001-03, Vol.11 (6), p.436-440
issn 0960-9822
1879-0445
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_109345
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Acyltransferases - genetics
Alcohol Oxidoreductases - genetics
EPS
Gene Silencing
Genes, Plant
Hydro-Lyases - genetics
Laboratorium voor Fytopathologie
Laboratorium voor Phytopathologie
Laboratory of Phytopathology
Petunia
posttranscriptional gene silencing
RNA Processing, Post-Transcriptional
RNA, Double-Stranded
RNA, Plant
Solanaceae - enzymology
Solanaceae - genetics
Transcription, Genetic
transcriptional gene silencing
transgenes
title Transcriptional and posttranscriptional gene silencing are mechanistically related
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20and%20posttranscriptional%20gene%20silencing%20are%20mechanistically%20related&rft.jtitle=Current%20biology&rft.au=Sijen,%20Titia&rft.date=2001-03-20&rft.volume=11&rft.issue=6&rft.spage=436&rft.epage=440&rft.pages=436-440&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/S0960-9822(01)00116-6&rft_dat=%3Cproquest_wagen%3E17860325%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17860325&rft_id=info:pmid/11301254&rfr_iscdi=true