Loading…
Transcriptional and posttranscriptional gene silencing are mechanistically related
Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [...
Saved in:
Published in: | Current biology 2001-03, Vol.11 (6), p.436-440 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13 |
container_end_page | 440 |
container_issue | 6 |
container_start_page | 436 |
container_title | Current biology |
container_volume | 11 |
creator | Sijen, Titia Vijn, Irma Rebocho, Alexandra van Blokland, Rik Roelofs, Dick Mol, Joseph N.M. Kooter, Jan M. |
description | Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1–4] or fortuitous production (R.v.B., unpublished data) of double-stranded RNA (dsRNA). TGS could be the result of DNA pairing [5], but could also be the result of dsRNA, as was shown by the dsRNA-induced inactivation of a transgenic promoter [6]. Here, we show that when targeting flower pigmentation genes in Petunia, transgenes expressing dsRNA can induce PTGS when coding sequences are used and TGS when promoter sequences are taken. For both types of silencing, small RNA species are found, which are thought to be dsRNA decay products [7] and determine the sequence specificity of the silencing process [8, 9]. Furthermore, silencing is accompanied by the methylation of DNA sequences that are homologous to dsRNA. DNA methylation is assumed to be essential for regulating TGS and important for reinforcing PTGS [10]. Therefore, we conclude that TGS and PTGS are mechanistically related. In addition, we show that dsRNA-induced TGS provides an efficient tool to generate gene knockouts, because not only does the TGS of a PTGS-inducing transgene fully revert the PTGS phenotype, but also an endogenous gene can be transcriptionally silenced by dsRNA corresponding to its promoter. |
doi_str_mv | 10.1016/S0960-9822(01)00116-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_109345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982201001166</els_id><sourcerecordid>17860325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13</originalsourceid><addsrcrecordid>eNqFkVGL1TAQhYMo7nX1Jyh9En2oZto0SX0RWdxVWBB0fR7SZLpGctOatC777033XhR82acJ4TtzDnMYew78DXCQb7_xXvK6103zisNrzgFkLR-wHWjV11yI7iHb_UVO2JOcfxao0b18zE4A2vLuxI59vUomZpv8vPgpmlCZ6Kp5ysvy3_81RaqyDxStj9eVSVTtyf4w0efFWxPCbZUomIXcU_ZoNCHTs-M8Zd_PP16dfaovv1x8PvtwWduuk0stWi1JE-cW5EidGUGPjRssqc4ZMoOggfQoXaMaoUraVgmnVTuM_QBOWmhP2bvD3htTwpVQFDGaZH3GyXgMfkgm3eLNmjCGbczrkBF434quiF8exHOafq2UF9z7bCkEE2laMyrFN1dxLwhKS94228buANo05ZxoxDn5_ZYAOG6V4V1luPWBHPCuMpRF9-JosA57cv9Ux44K8P4AUDnmb08Js_WlBnI-kV3QTf4eiz9_Tal1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17860325</pqid></control><display><type>article</type><title>Transcriptional and posttranscriptional gene silencing are mechanistically related</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Sijen, Titia ; Vijn, Irma ; Rebocho, Alexandra ; van Blokland, Rik ; Roelofs, Dick ; Mol, Joseph N.M. ; Kooter, Jan M.</creator><creatorcontrib>Sijen, Titia ; Vijn, Irma ; Rebocho, Alexandra ; van Blokland, Rik ; Roelofs, Dick ; Mol, Joseph N.M. ; Kooter, Jan M.</creatorcontrib><description>Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1–4] or fortuitous production (R.v.B., unpublished data) of double-stranded RNA (dsRNA). TGS could be the result of DNA pairing [5], but could also be the result of dsRNA, as was shown by the dsRNA-induced inactivation of a transgenic promoter [6]. Here, we show that when targeting flower pigmentation genes in Petunia, transgenes expressing dsRNA can induce PTGS when coding sequences are used and TGS when promoter sequences are taken. For both types of silencing, small RNA species are found, which are thought to be dsRNA decay products [7] and determine the sequence specificity of the silencing process [8, 9]. Furthermore, silencing is accompanied by the methylation of DNA sequences that are homologous to dsRNA. DNA methylation is assumed to be essential for regulating TGS and important for reinforcing PTGS [10]. Therefore, we conclude that TGS and PTGS are mechanistically related. In addition, we show that dsRNA-induced TGS provides an efficient tool to generate gene knockouts, because not only does the TGS of a PTGS-inducing transgene fully revert the PTGS phenotype, but also an endogenous gene can be transcriptionally silenced by dsRNA corresponding to its promoter.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/S0960-9822(01)00116-6</identifier><identifier>PMID: 11301254</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Acyltransferases - genetics ; Alcohol Oxidoreductases - genetics ; EPS ; Gene Silencing ; Genes, Plant ; Hydro-Lyases - genetics ; Laboratorium voor Fytopathologie ; Laboratorium voor Phytopathologie ; Laboratory of Phytopathology ; Petunia ; posttranscriptional gene silencing ; RNA Processing, Post-Transcriptional ; RNA, Double-Stranded ; RNA, Plant ; Solanaceae - enzymology ; Solanaceae - genetics ; Transcription, Genetic ; transcriptional gene silencing ; transgenes</subject><ispartof>Current biology, 2001-03, Vol.11 (6), p.436-440</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13</citedby><cites>FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11301254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sijen, Titia</creatorcontrib><creatorcontrib>Vijn, Irma</creatorcontrib><creatorcontrib>Rebocho, Alexandra</creatorcontrib><creatorcontrib>van Blokland, Rik</creatorcontrib><creatorcontrib>Roelofs, Dick</creatorcontrib><creatorcontrib>Mol, Joseph N.M.</creatorcontrib><creatorcontrib>Kooter, Jan M.</creatorcontrib><title>Transcriptional and posttranscriptional gene silencing are mechanistically related</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1–4] or fortuitous production (R.v.B., unpublished data) of double-stranded RNA (dsRNA). TGS could be the result of DNA pairing [5], but could also be the result of dsRNA, as was shown by the dsRNA-induced inactivation of a transgenic promoter [6]. Here, we show that when targeting flower pigmentation genes in Petunia, transgenes expressing dsRNA can induce PTGS when coding sequences are used and TGS when promoter sequences are taken. For both types of silencing, small RNA species are found, which are thought to be dsRNA decay products [7] and determine the sequence specificity of the silencing process [8, 9]. Furthermore, silencing is accompanied by the methylation of DNA sequences that are homologous to dsRNA. DNA methylation is assumed to be essential for regulating TGS and important for reinforcing PTGS [10]. Therefore, we conclude that TGS and PTGS are mechanistically related. In addition, we show that dsRNA-induced TGS provides an efficient tool to generate gene knockouts, because not only does the TGS of a PTGS-inducing transgene fully revert the PTGS phenotype, but also an endogenous gene can be transcriptionally silenced by dsRNA corresponding to its promoter.</description><subject>Acyltransferases - genetics</subject><subject>Alcohol Oxidoreductases - genetics</subject><subject>EPS</subject><subject>Gene Silencing</subject><subject>Genes, Plant</subject><subject>Hydro-Lyases - genetics</subject><subject>Laboratorium voor Fytopathologie</subject><subject>Laboratorium voor Phytopathologie</subject><subject>Laboratory of Phytopathology</subject><subject>Petunia</subject><subject>posttranscriptional gene silencing</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA, Double-Stranded</subject><subject>RNA, Plant</subject><subject>Solanaceae - enzymology</subject><subject>Solanaceae - genetics</subject><subject>Transcription, Genetic</subject><subject>transcriptional gene silencing</subject><subject>transgenes</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkVGL1TAQhYMo7nX1Jyh9En2oZto0SX0RWdxVWBB0fR7SZLpGctOatC777033XhR82acJ4TtzDnMYew78DXCQb7_xXvK6103zisNrzgFkLR-wHWjV11yI7iHb_UVO2JOcfxao0b18zE4A2vLuxI59vUomZpv8vPgpmlCZ6Kp5ysvy3_81RaqyDxStj9eVSVTtyf4w0efFWxPCbZUomIXcU_ZoNCHTs-M8Zd_PP16dfaovv1x8PvtwWduuk0stWi1JE-cW5EidGUGPjRssqc4ZMoOggfQoXaMaoUraVgmnVTuM_QBOWmhP2bvD3htTwpVQFDGaZH3GyXgMfkgm3eLNmjCGbczrkBF434quiF8exHOafq2UF9z7bCkEE2laMyrFN1dxLwhKS94228buANo05ZxoxDn5_ZYAOG6V4V1luPWBHPCuMpRF9-JosA57cv9Ux44K8P4AUDnmb08Js_WlBnI-kV3QTf4eiz9_Tal1</recordid><startdate>20010320</startdate><enddate>20010320</enddate><creator>Sijen, Titia</creator><creator>Vijn, Irma</creator><creator>Rebocho, Alexandra</creator><creator>van Blokland, Rik</creator><creator>Roelofs, Dick</creator><creator>Mol, Joseph N.M.</creator><creator>Kooter, Jan M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>QVL</scope></search><sort><creationdate>20010320</creationdate><title>Transcriptional and posttranscriptional gene silencing are mechanistically related</title><author>Sijen, Titia ; Vijn, Irma ; Rebocho, Alexandra ; van Blokland, Rik ; Roelofs, Dick ; Mol, Joseph N.M. ; Kooter, Jan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acyltransferases - genetics</topic><topic>Alcohol Oxidoreductases - genetics</topic><topic>EPS</topic><topic>Gene Silencing</topic><topic>Genes, Plant</topic><topic>Hydro-Lyases - genetics</topic><topic>Laboratorium voor Fytopathologie</topic><topic>Laboratorium voor Phytopathologie</topic><topic>Laboratory of Phytopathology</topic><topic>Petunia</topic><topic>posttranscriptional gene silencing</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA, Double-Stranded</topic><topic>RNA, Plant</topic><topic>Solanaceae - enzymology</topic><topic>Solanaceae - genetics</topic><topic>Transcription, Genetic</topic><topic>transcriptional gene silencing</topic><topic>transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sijen, Titia</creatorcontrib><creatorcontrib>Vijn, Irma</creatorcontrib><creatorcontrib>Rebocho, Alexandra</creatorcontrib><creatorcontrib>van Blokland, Rik</creatorcontrib><creatorcontrib>Roelofs, Dick</creatorcontrib><creatorcontrib>Mol, Joseph N.M.</creatorcontrib><creatorcontrib>Kooter, Jan M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NARCIS:Publications</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sijen, Titia</au><au>Vijn, Irma</au><au>Rebocho, Alexandra</au><au>van Blokland, Rik</au><au>Roelofs, Dick</au><au>Mol, Joseph N.M.</au><au>Kooter, Jan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional and posttranscriptional gene silencing are mechanistically related</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2001-03-20</date><risdate>2001</risdate><volume>11</volume><issue>6</issue><spage>436</spage><epage>440</epage><pages>436-440</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Two distinct gene-silencing phenomena are observed in plants: transcriptional gene silencing (TGS), which involves decreased RNA synthesis because of promoter methylation, and posttranscriptional gene silencing (PTGS), which involves sequence-specific RNA degradation. PTGS is induced by deliberate [1–4] or fortuitous production (R.v.B., unpublished data) of double-stranded RNA (dsRNA). TGS could be the result of DNA pairing [5], but could also be the result of dsRNA, as was shown by the dsRNA-induced inactivation of a transgenic promoter [6]. Here, we show that when targeting flower pigmentation genes in Petunia, transgenes expressing dsRNA can induce PTGS when coding sequences are used and TGS when promoter sequences are taken. For both types of silencing, small RNA species are found, which are thought to be dsRNA decay products [7] and determine the sequence specificity of the silencing process [8, 9]. Furthermore, silencing is accompanied by the methylation of DNA sequences that are homologous to dsRNA. DNA methylation is assumed to be essential for regulating TGS and important for reinforcing PTGS [10]. Therefore, we conclude that TGS and PTGS are mechanistically related. In addition, we show that dsRNA-induced TGS provides an efficient tool to generate gene knockouts, because not only does the TGS of a PTGS-inducing transgene fully revert the PTGS phenotype, but also an endogenous gene can be transcriptionally silenced by dsRNA corresponding to its promoter.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>11301254</pmid><doi>10.1016/S0960-9822(01)00116-6</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2001-03, Vol.11 (6), p.436-440 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_109345 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Acyltransferases - genetics Alcohol Oxidoreductases - genetics EPS Gene Silencing Genes, Plant Hydro-Lyases - genetics Laboratorium voor Fytopathologie Laboratorium voor Phytopathologie Laboratory of Phytopathology Petunia posttranscriptional gene silencing RNA Processing, Post-Transcriptional RNA, Double-Stranded RNA, Plant Solanaceae - enzymology Solanaceae - genetics Transcription, Genetic transcriptional gene silencing transgenes |
title | Transcriptional and posttranscriptional gene silencing are mechanistically related |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A36%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20and%20posttranscriptional%20gene%20silencing%20are%20mechanistically%20related&rft.jtitle=Current%20biology&rft.au=Sijen,%20Titia&rft.date=2001-03-20&rft.volume=11&rft.issue=6&rft.spage=436&rft.epage=440&rft.pages=436-440&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/S0960-9822(01)00116-6&rft_dat=%3Cproquest_wagen%3E17860325%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-4386e8e00c16fe5af18f2dbce75daeab4ebe8f6d27247012374d873bf9b1d6c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17860325&rft_id=info:pmid/11301254&rfr_iscdi=true |