Loading…

Modelling of Temperature‐controlled Internode Elongation Applied to Chrysanthemum

The DIF concept states that equal internode length can be achieved with the same difference between day and night temperature irrespective of the mean 24 h temperature. However, the physiological background of the DIF concept is unclear. An attempt to model internode elongation is presented based on...

Full description

Saved in:
Bibliographic Details
Published in:Annals of botany 2002-09, Vol.90 (3), p.353-359
Main Authors: SCHOUTEN, R. E., CARVALHO, S. M. P., HEUVELINK, E., VAN KOOTEN, O.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-d89792aa3abb06b623eac26b7b03cf54197e2a48f2fd639b995c441a3cd7a1153
cites
container_end_page 359
container_issue 3
container_start_page 353
container_title Annals of botany
container_volume 90
creator SCHOUTEN, R. E.
CARVALHO, S. M. P.
HEUVELINK, E.
VAN KOOTEN, O.
description The DIF concept states that equal internode length can be achieved with the same difference between day and night temperature irrespective of the mean 24 h temperature. However, the physiological background of the DIF concept is unclear. An attempt to model internode elongation is presented based on three plausible processes, namely (1) the accumulation of elongation requirements during the day, (2) elongation during the night using elongation requirements and (3) the limitation of internode length due to low turgor pressure unable to counter cell wall elasticity. Each reaction rate constant, one per process, depends on temperature according to Arrhenius’ Law. The resulting process‐based model describes internode elongation in time and was calibrated on a chrysanthemum data set. Chrysanthemum plants were grown in growth chambers with rigorously defined day and night temperatures. In total, 16 temperature treatments were applied, resulting from the combination of four day and four night temperatures (16, 20, 24 and 28 °C). Internode elongation was measured for the tenth internode in ten plants per treatment. The percentage variance accounted for, R2adj, was almost 91 %. Transferability of model parameters was shown to exist by cross validation. Simulation of the internode length in time as function of mean 24 h temperature and DIF showed that the DIF concept is not apparent after a growing period of 10 d, but is visible after 20 d. This model structure for describing internode elongation might also be applicable for other plants that show the DIF concept.
doi_str_mv 10.1093/aob/mcf196
format article
fullrecord <record><control><sourceid>jstor_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_122477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42795520</jstor_id><sourcerecordid>42795520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-d89792aa3abb06b623eac26b7b03cf54197e2a48f2fd639b995c441a3cd7a1153</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EokNhwx4UsWCBFOrfeMwCqRpKW1TEokVUbCzHcWY8OHawE0p3PALPyJPgKKPhZ3Wle757dO89ADxG8CWCghypUB91ukWiugMWucPKJRbwLlhAAlnJSUUPwIOUthBCXAl0HxwgjAlFlC_A5fvQGOesXxehLa5M15uohjGaXz9-6uCHGJwzTXHuBxN9RosTF_xaDTb44rjvnc3iEIrVJt4m5YeN6cbuIbjXKpfMo109BB_fnlytzsqLD6fnq-OLUjOEh7JZCi6wUkTVNazqChOjNK5qXkOiW0aR4AYrumxx21RE1EIwTSlSRDdcIcTIIXg1-96otfH5BOOlV1HbJIOy0tk6qngrb8YovZtKP9ZJ5tsp53n49Tycm51ptMm3Kif7aLtpaDL4V_F2I9fhm6SYQiKqbPB8ZxDD19GkQXY26fxL5U0Yk-QYCiogyeCz_8BtGKPPn5FIMMghYpPbixnSMaQUTbvfBEE5pSxzynJOOcNP_979D7qLNQNPZmCbhhD3OsVcMIZh1stZt2kw3_e6il9kxQln8uz6s3zzCV2Kd9dInpLf6DTA7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195070156</pqid></control><display><type>article</type><title>Modelling of Temperature‐controlled Internode Elongation Applied to Chrysanthemum</title><source>Oxford Journals Online</source><source>PubMed Central</source><source>JSTOR</source><creator>SCHOUTEN, R. E. ; CARVALHO, S. M. P. ; HEUVELINK, E. ; VAN KOOTEN, O.</creator><creatorcontrib>SCHOUTEN, R. E. ; CARVALHO, S. M. P. ; HEUVELINK, E. ; VAN KOOTEN, O.</creatorcontrib><description>The DIF concept states that equal internode length can be achieved with the same difference between day and night temperature irrespective of the mean 24 h temperature. However, the physiological background of the DIF concept is unclear. An attempt to model internode elongation is presented based on three plausible processes, namely (1) the accumulation of elongation requirements during the day, (2) elongation during the night using elongation requirements and (3) the limitation of internode length due to low turgor pressure unable to counter cell wall elasticity. Each reaction rate constant, one per process, depends on temperature according to Arrhenius’ Law. The resulting process‐based model describes internode elongation in time and was calibrated on a chrysanthemum data set. Chrysanthemum plants were grown in growth chambers with rigorously defined day and night temperatures. In total, 16 temperature treatments were applied, resulting from the combination of four day and four night temperatures (16, 20, 24 and 28 °C). Internode elongation was measured for the tenth internode in ten plants per treatment. The percentage variance accounted for, R2adj, was almost 91 %. Transferability of model parameters was shown to exist by cross validation. Simulation of the internode length in time as function of mean 24 h temperature and DIF showed that the DIF concept is not apparent after a growing period of 10 d, but is visible after 20 d. This model structure for describing internode elongation might also be applicable for other plants that show the DIF concept.</description><identifier>ISSN: 0305-7364</identifier><identifier>EISSN: 1095-8290</identifier><identifier>DOI: 10.1093/aob/mcf196</identifier><identifier>PMID: 12234147</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Analytical estimating ; Chrysanthemum - growth &amp; development ; Computer Simulation ; Datasets ; day temperature ; DIF ; elongation ; Greenhouses ; Horticultural Supply Chains ; Horticulture ; internode length ; Internodes ; Key words: Chrysanthemum ; Leerstoelgroep Tuinbouwproductieketens ; Models, Biological ; night temperature ; Original ; Parametric models ; PE&amp;RC ; Plants ; Reaction kinetics ; Regression Analysis ; Stem elongation ; Temperature ; Temperature dependence ; Time Factors</subject><ispartof>Annals of botany, 2002-09, Vol.90 (3), p.353-359</ispartof><rights>2002 Annals of Botany Company</rights><rights>Copyright Oxford University Press(England) Sep 01, 2002</rights><rights>2002</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-d89792aa3abb06b623eac26b7b03cf54197e2a48f2fd639b995c441a3cd7a1153</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42795520$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42795520$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12234147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>SCHOUTEN, R. E.</creatorcontrib><creatorcontrib>CARVALHO, S. M. P.</creatorcontrib><creatorcontrib>HEUVELINK, E.</creatorcontrib><creatorcontrib>VAN KOOTEN, O.</creatorcontrib><title>Modelling of Temperature‐controlled Internode Elongation Applied to Chrysanthemum</title><title>Annals of botany</title><addtitle>Ann Bot</addtitle><description>The DIF concept states that equal internode length can be achieved with the same difference between day and night temperature irrespective of the mean 24 h temperature. However, the physiological background of the DIF concept is unclear. An attempt to model internode elongation is presented based on three plausible processes, namely (1) the accumulation of elongation requirements during the day, (2) elongation during the night using elongation requirements and (3) the limitation of internode length due to low turgor pressure unable to counter cell wall elasticity. Each reaction rate constant, one per process, depends on temperature according to Arrhenius’ Law. The resulting process‐based model describes internode elongation in time and was calibrated on a chrysanthemum data set. Chrysanthemum plants were grown in growth chambers with rigorously defined day and night temperatures. In total, 16 temperature treatments were applied, resulting from the combination of four day and four night temperatures (16, 20, 24 and 28 °C). Internode elongation was measured for the tenth internode in ten plants per treatment. The percentage variance accounted for, R2adj, was almost 91 %. Transferability of model parameters was shown to exist by cross validation. Simulation of the internode length in time as function of mean 24 h temperature and DIF showed that the DIF concept is not apparent after a growing period of 10 d, but is visible after 20 d. This model structure for describing internode elongation might also be applicable for other plants that show the DIF concept.</description><subject>Analytical estimating</subject><subject>Chrysanthemum - growth &amp; development</subject><subject>Computer Simulation</subject><subject>Datasets</subject><subject>day temperature</subject><subject>DIF</subject><subject>elongation</subject><subject>Greenhouses</subject><subject>Horticultural Supply Chains</subject><subject>Horticulture</subject><subject>internode length</subject><subject>Internodes</subject><subject>Key words: Chrysanthemum</subject><subject>Leerstoelgroep Tuinbouwproductieketens</subject><subject>Models, Biological</subject><subject>night temperature</subject><subject>Original</subject><subject>Parametric models</subject><subject>PE&amp;RC</subject><subject>Plants</subject><subject>Reaction kinetics</subject><subject>Regression Analysis</subject><subject>Stem elongation</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Time Factors</subject><issn>0305-7364</issn><issn>1095-8290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpdkc1u1DAUhS0EokNhwx4UsWCBFOrfeMwCqRpKW1TEokVUbCzHcWY8OHawE0p3PALPyJPgKKPhZ3Wle757dO89ADxG8CWCghypUB91ukWiugMWucPKJRbwLlhAAlnJSUUPwIOUthBCXAl0HxwgjAlFlC_A5fvQGOesXxehLa5M15uohjGaXz9-6uCHGJwzTXHuBxN9RosTF_xaDTb44rjvnc3iEIrVJt4m5YeN6cbuIbjXKpfMo109BB_fnlytzsqLD6fnq-OLUjOEh7JZCi6wUkTVNazqChOjNK5qXkOiW0aR4AYrumxx21RE1EIwTSlSRDdcIcTIIXg1-96otfH5BOOlV1HbJIOy0tk6qngrb8YovZtKP9ZJ5tsp53n49Tycm51ptMm3Kif7aLtpaDL4V_F2I9fhm6SYQiKqbPB8ZxDD19GkQXY26fxL5U0Yk-QYCiogyeCz_8BtGKPPn5FIMMghYpPbixnSMaQUTbvfBEE5pSxzynJOOcNP_979D7qLNQNPZmCbhhD3OsVcMIZh1stZt2kw3_e6il9kxQln8uz6s3zzCV2Kd9dInpLf6DTA7w</recordid><startdate>20020901</startdate><enddate>20020901</enddate><creator>SCHOUTEN, R. E.</creator><creator>CARVALHO, S. M. P.</creator><creator>HEUVELINK, E.</creator><creator>VAN KOOTEN, O.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>QVL</scope></search><sort><creationdate>20020901</creationdate><title>Modelling of Temperature‐controlled Internode Elongation Applied to Chrysanthemum</title><author>SCHOUTEN, R. E. ; CARVALHO, S. M. P. ; HEUVELINK, E. ; VAN KOOTEN, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-d89792aa3abb06b623eac26b7b03cf54197e2a48f2fd639b995c441a3cd7a1153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Analytical estimating</topic><topic>Chrysanthemum - growth &amp; development</topic><topic>Computer Simulation</topic><topic>Datasets</topic><topic>day temperature</topic><topic>DIF</topic><topic>elongation</topic><topic>Greenhouses</topic><topic>Horticultural Supply Chains</topic><topic>Horticulture</topic><topic>internode length</topic><topic>Internodes</topic><topic>Key words: Chrysanthemum</topic><topic>Leerstoelgroep Tuinbouwproductieketens</topic><topic>Models, Biological</topic><topic>night temperature</topic><topic>Original</topic><topic>Parametric models</topic><topic>PE&amp;RC</topic><topic>Plants</topic><topic>Reaction kinetics</topic><topic>Regression Analysis</topic><topic>Stem elongation</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHOUTEN, R. E.</creatorcontrib><creatorcontrib>CARVALHO, S. M. P.</creatorcontrib><creatorcontrib>HEUVELINK, E.</creatorcontrib><creatorcontrib>VAN KOOTEN, O.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><jtitle>Annals of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHOUTEN, R. E.</au><au>CARVALHO, S. M. P.</au><au>HEUVELINK, E.</au><au>VAN KOOTEN, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of Temperature‐controlled Internode Elongation Applied to Chrysanthemum</atitle><jtitle>Annals of botany</jtitle><addtitle>Ann Bot</addtitle><date>2002-09-01</date><risdate>2002</risdate><volume>90</volume><issue>3</issue><spage>353</spage><epage>359</epage><pages>353-359</pages><issn>0305-7364</issn><eissn>1095-8290</eissn><abstract>The DIF concept states that equal internode length can be achieved with the same difference between day and night temperature irrespective of the mean 24 h temperature. However, the physiological background of the DIF concept is unclear. An attempt to model internode elongation is presented based on three plausible processes, namely (1) the accumulation of elongation requirements during the day, (2) elongation during the night using elongation requirements and (3) the limitation of internode length due to low turgor pressure unable to counter cell wall elasticity. Each reaction rate constant, one per process, depends on temperature according to Arrhenius’ Law. The resulting process‐based model describes internode elongation in time and was calibrated on a chrysanthemum data set. Chrysanthemum plants were grown in growth chambers with rigorously defined day and night temperatures. In total, 16 temperature treatments were applied, resulting from the combination of four day and four night temperatures (16, 20, 24 and 28 °C). Internode elongation was measured for the tenth internode in ten plants per treatment. The percentage variance accounted for, R2adj, was almost 91 %. Transferability of model parameters was shown to exist by cross validation. Simulation of the internode length in time as function of mean 24 h temperature and DIF showed that the DIF concept is not apparent after a growing period of 10 d, but is visible after 20 d. This model structure for describing internode elongation might also be applicable for other plants that show the DIF concept.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12234147</pmid><doi>10.1093/aob/mcf196</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-7364
ispartof Annals of botany, 2002-09, Vol.90 (3), p.353-359
issn 0305-7364
1095-8290
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_122477
source Oxford Journals Online; PubMed Central; JSTOR
subjects Analytical estimating
Chrysanthemum - growth & development
Computer Simulation
Datasets
day temperature
DIF
elongation
Greenhouses
Horticultural Supply Chains
Horticulture
internode length
Internodes
Key words: Chrysanthemum
Leerstoelgroep Tuinbouwproductieketens
Models, Biological
night temperature
Original
Parametric models
PE&RC
Plants
Reaction kinetics
Regression Analysis
Stem elongation
Temperature
Temperature dependence
Time Factors
title Modelling of Temperature‐controlled Internode Elongation Applied to Chrysanthemum
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20Temperature%E2%80%90controlled%20Internode%20Elongation%20Applied%20to%20Chrysanthemum&rft.jtitle=Annals%20of%20botany&rft.au=SCHOUTEN,%20R.%20E.&rft.date=2002-09-01&rft.volume=90&rft.issue=3&rft.spage=353&rft.epage=359&rft.pages=353-359&rft.issn=0305-7364&rft.eissn=1095-8290&rft_id=info:doi/10.1093/aob/mcf196&rft_dat=%3Cjstor_wagen%3E42795520%3C/jstor_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-d89792aa3abb06b623eac26b7b03cf54197e2a48f2fd639b995c441a3cd7a1153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195070156&rft_id=info:pmid/12234147&rft_jstor_id=42795520&rfr_iscdi=true