Loading…

Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties

Imaging spectrometer data were acquired over conifer stands to retrieve spatially distributed information on canopy structure and foliage water content, which may be used to assess fire risk and to manage the impact of forest fires. The study relied on a comprehensive field campaign using stratified...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2004-08, Vol.92 (3), p.332-344
Main Authors: Kötz, Benjamin, Schaepman, Michael, Morsdorf, Felix, Bowyer, Paul, Itten, Klaus, Allgöwer, Britta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3
cites cdi_FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3
container_end_page 344
container_issue 3
container_start_page 332
container_title Remote sensing of environment
container_volume 92
creator Kötz, Benjamin
Schaepman, Michael
Morsdorf, Felix
Bowyer, Paul
Itten, Klaus
Allgöwer, Britta
description Imaging spectrometer data were acquired over conifer stands to retrieve spatially distributed information on canopy structure and foliage water content, which may be used to assess fire risk and to manage the impact of forest fires. The study relied on a comprehensive field campaign using stratified systematic unaligned sampling ranging from full spectroradiometric characterization of the canopy to conventional measurements of biochemical and biophysical variables. Airborne imaging spectrometer data (DAIS7915 and ROSIS) were acquired parallel to the ground measurements, describing the canopy reflectance of the observed forest. Coniferous canopies are highly heterogeneous and thus the transfer of incident radiation within the canopy is dominated by its structure. We demonstrated the viability of radiative transfer representation and compared the performance of two hybrid canopy reflectance models, GeoSAIL and FLIGHT, within this heterogeneous medium. Despite the different nature and canopy representation of these models, they yielded similar results. Subsequently, the inversion of a hyperspectral GeoSAIL version demonstrated the feasibility of estimating structure and foliage water content of a coniferous canopy based on radiative transfer modeling. Estimates of the canopy variables showed reasonably accurate results and were validated through ground measurements.
doi_str_mv 10.1016/j.rse.2004.05.015
format article
fullrecord <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_333244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425704001488</els_id><sourcerecordid>14720509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3</originalsourceid><addsrcrecordid>eNp9UcFu1DAQjRBILIUP4OYL3JKOEyfewAlVQJEqIaHerYkz3nqVtYOddNW_Z8JWHDmNNHrvzXtviuK9hEqC7K6PVcpU1QCqgrYC2b4odnKv-xI0qJfFDqBRpapb_bp4k_MRGLHXclccfuHocfGPJJaEITtK4hRHmnw4iLNfHnwQKB5ooRQPFCiuWVgMcX4SLiZBefEnpscgots2vBDOJxJupUnMKc6UFk_5bfHK4ZTp3fO8Ku6_fb2_uS3vfn7_cfPlrrQK-qXUA8ixBaB6gFH2PZJlm5o66RBci9iABKeltVrt686OSvaD1oO2GofONVfFp4vsGdktZ6BgAibrs4nozeSHhOnJnNdkwrSNeR2yaZqmVorJHy9ktv175STm5LOlacK_uY1UuoYWegbKC9CmmHMiZ-bENbCwBLO9wxwNv8Ns7zDQGi6bOR-exTFbnByXvbn6R-ykrFXdMe7zBUfc0qOnZLL1FCyN3KpdzBj9f678ASujo7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14720509</pqid></control><display><type>article</type><title>Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties</title><source>ScienceDirect Freedom Collection</source><creator>Kötz, Benjamin ; Schaepman, Michael ; Morsdorf, Felix ; Bowyer, Paul ; Itten, Klaus ; Allgöwer, Britta</creator><creatorcontrib>Kötz, Benjamin ; Schaepman, Michael ; Morsdorf, Felix ; Bowyer, Paul ; Itten, Klaus ; Allgöwer, Britta</creatorcontrib><description>Imaging spectrometer data were acquired over conifer stands to retrieve spatially distributed information on canopy structure and foliage water content, which may be used to assess fire risk and to manage the impact of forest fires. The study relied on a comprehensive field campaign using stratified systematic unaligned sampling ranging from full spectroradiometric characterization of the canopy to conventional measurements of biochemical and biophysical variables. Airborne imaging spectrometer data (DAIS7915 and ROSIS) were acquired parallel to the ground measurements, describing the canopy reflectance of the observed forest. Coniferous canopies are highly heterogeneous and thus the transfer of incident radiation within the canopy is dominated by its structure. We demonstrated the viability of radiative transfer representation and compared the performance of two hybrid canopy reflectance models, GeoSAIL and FLIGHT, within this heterogeneous medium. Despite the different nature and canopy representation of these models, they yielded similar results. Subsequently, the inversion of a hyperspectral GeoSAIL version demonstrated the feasibility of estimating structure and foliage water content of a coniferous canopy based on radiative transfer modeling. Estimates of the canopy variables showed reasonably accurate results and were validated through ground measurements.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2004.05.015</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>airborne imaging spectrometry ; Animal, plant and microbial ecology ; Applied geophysics ; bidirectional reflectance ; Biological and medical sciences ; canopy structure ; chlorophyll content estimation ; coniferous canopy ; danger assessment ; Earth sciences ; Earth, ocean, space ; equivalent water thickness ; Exact sciences and technology ; foliage water content ; forest fire ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; hyperspectral data ; Imaging spectroscopy ; Internal geophysics ; leaf-area index ; radiative transfer ; reflectance model ; remote-sensing data ; Teledetection and vegetation maps ; vegetation water</subject><ispartof>Remote sensing of environment, 2004-08, Vol.92 (3), p.332-344</ispartof><rights>2004 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3</citedby><cites>FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16112426$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kötz, Benjamin</creatorcontrib><creatorcontrib>Schaepman, Michael</creatorcontrib><creatorcontrib>Morsdorf, Felix</creatorcontrib><creatorcontrib>Bowyer, Paul</creatorcontrib><creatorcontrib>Itten, Klaus</creatorcontrib><creatorcontrib>Allgöwer, Britta</creatorcontrib><title>Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties</title><title>Remote sensing of environment</title><description>Imaging spectrometer data were acquired over conifer stands to retrieve spatially distributed information on canopy structure and foliage water content, which may be used to assess fire risk and to manage the impact of forest fires. The study relied on a comprehensive field campaign using stratified systematic unaligned sampling ranging from full spectroradiometric characterization of the canopy to conventional measurements of biochemical and biophysical variables. Airborne imaging spectrometer data (DAIS7915 and ROSIS) were acquired parallel to the ground measurements, describing the canopy reflectance of the observed forest. Coniferous canopies are highly heterogeneous and thus the transfer of incident radiation within the canopy is dominated by its structure. We demonstrated the viability of radiative transfer representation and compared the performance of two hybrid canopy reflectance models, GeoSAIL and FLIGHT, within this heterogeneous medium. Despite the different nature and canopy representation of these models, they yielded similar results. Subsequently, the inversion of a hyperspectral GeoSAIL version demonstrated the feasibility of estimating structure and foliage water content of a coniferous canopy based on radiative transfer modeling. Estimates of the canopy variables showed reasonably accurate results and were validated through ground measurements.</description><subject>airborne imaging spectrometry</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>bidirectional reflectance</subject><subject>Biological and medical sciences</subject><subject>canopy structure</subject><subject>chlorophyll content estimation</subject><subject>coniferous canopy</subject><subject>danger assessment</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>equivalent water thickness</subject><subject>Exact sciences and technology</subject><subject>foliage water content</subject><subject>forest fire</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>hyperspectral data</subject><subject>Imaging spectroscopy</subject><subject>Internal geophysics</subject><subject>leaf-area index</subject><subject>radiative transfer</subject><subject>reflectance model</subject><subject>remote-sensing data</subject><subject>Teledetection and vegetation maps</subject><subject>vegetation water</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1DAQjRBILIUP4OYL3JKOEyfewAlVQJEqIaHerYkz3nqVtYOddNW_Z8JWHDmNNHrvzXtviuK9hEqC7K6PVcpU1QCqgrYC2b4odnKv-xI0qJfFDqBRpapb_bp4k_MRGLHXclccfuHocfGPJJaEITtK4hRHmnw4iLNfHnwQKB5ooRQPFCiuWVgMcX4SLiZBefEnpscgots2vBDOJxJupUnMKc6UFk_5bfHK4ZTp3fO8Ku6_fb2_uS3vfn7_cfPlrrQK-qXUA8ixBaB6gFH2PZJlm5o66RBci9iABKeltVrt686OSvaD1oO2GofONVfFp4vsGdktZ6BgAibrs4nozeSHhOnJnNdkwrSNeR2yaZqmVorJHy9ktv175STm5LOlacK_uY1UuoYWegbKC9CmmHMiZ-bENbCwBLO9wxwNv8Ns7zDQGi6bOR-exTFbnByXvbn6R-ykrFXdMe7zBUfc0qOnZLL1FCyN3KpdzBj9f678ASujo7A</recordid><startdate>20040830</startdate><enddate>20040830</enddate><creator>Kötz, Benjamin</creator><creator>Schaepman, Michael</creator><creator>Morsdorf, Felix</creator><creator>Bowyer, Paul</creator><creator>Itten, Klaus</creator><creator>Allgöwer, Britta</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>QVL</scope></search><sort><creationdate>20040830</creationdate><title>Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties</title><author>Kötz, Benjamin ; Schaepman, Michael ; Morsdorf, Felix ; Bowyer, Paul ; Itten, Klaus ; Allgöwer, Britta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>airborne imaging spectrometry</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>bidirectional reflectance</topic><topic>Biological and medical sciences</topic><topic>canopy structure</topic><topic>chlorophyll content estimation</topic><topic>coniferous canopy</topic><topic>danger assessment</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>equivalent water thickness</topic><topic>Exact sciences and technology</topic><topic>foliage water content</topic><topic>forest fire</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>hyperspectral data</topic><topic>Imaging spectroscopy</topic><topic>Internal geophysics</topic><topic>leaf-area index</topic><topic>radiative transfer</topic><topic>reflectance model</topic><topic>remote-sensing data</topic><topic>Teledetection and vegetation maps</topic><topic>vegetation water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kötz, Benjamin</creatorcontrib><creatorcontrib>Schaepman, Michael</creatorcontrib><creatorcontrib>Morsdorf, Felix</creatorcontrib><creatorcontrib>Bowyer, Paul</creatorcontrib><creatorcontrib>Itten, Klaus</creatorcontrib><creatorcontrib>Allgöwer, Britta</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>NARCIS:Publications</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kötz, Benjamin</au><au>Schaepman, Michael</au><au>Morsdorf, Felix</au><au>Bowyer, Paul</au><au>Itten, Klaus</au><au>Allgöwer, Britta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties</atitle><jtitle>Remote sensing of environment</jtitle><date>2004-08-30</date><risdate>2004</risdate><volume>92</volume><issue>3</issue><spage>332</spage><epage>344</epage><pages>332-344</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>Imaging spectrometer data were acquired over conifer stands to retrieve spatially distributed information on canopy structure and foliage water content, which may be used to assess fire risk and to manage the impact of forest fires. The study relied on a comprehensive field campaign using stratified systematic unaligned sampling ranging from full spectroradiometric characterization of the canopy to conventional measurements of biochemical and biophysical variables. Airborne imaging spectrometer data (DAIS7915 and ROSIS) were acquired parallel to the ground measurements, describing the canopy reflectance of the observed forest. Coniferous canopies are highly heterogeneous and thus the transfer of incident radiation within the canopy is dominated by its structure. We demonstrated the viability of radiative transfer representation and compared the performance of two hybrid canopy reflectance models, GeoSAIL and FLIGHT, within this heterogeneous medium. Despite the different nature and canopy representation of these models, they yielded similar results. Subsequently, the inversion of a hyperspectral GeoSAIL version demonstrated the feasibility of estimating structure and foliage water content of a coniferous canopy based on radiative transfer modeling. Estimates of the canopy variables showed reasonably accurate results and were validated through ground measurements.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2004.05.015</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2004-08, Vol.92 (3), p.332-344
issn 0034-4257
1879-0704
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_333244
source ScienceDirect Freedom Collection
subjects airborne imaging spectrometry
Animal, plant and microbial ecology
Applied geophysics
bidirectional reflectance
Biological and medical sciences
canopy structure
chlorophyll content estimation
coniferous canopy
danger assessment
Earth sciences
Earth, ocean, space
equivalent water thickness
Exact sciences and technology
foliage water content
forest fire
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
hyperspectral data
Imaging spectroscopy
Internal geophysics
leaf-area index
radiative transfer
reflectance model
remote-sensing data
Teledetection and vegetation maps
vegetation water
title Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20transfer%20modeling%20within%20a%20heterogeneous%20canopy%20for%20estimation%20of%20forest%20fire%20fuel%20properties&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=K%C3%B6tz,%20Benjamin&rft.date=2004-08-30&rft.volume=92&rft.issue=3&rft.spage=332&rft.epage=344&rft.pages=332-344&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/j.rse.2004.05.015&rft_dat=%3Cproquest_wagen%3E14720509%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14720509&rft_id=info:pmid/&rfr_iscdi=true