Loading…
Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties
Imaging spectrometer data were acquired over conifer stands to retrieve spatially distributed information on canopy structure and foliage water content, which may be used to assess fire risk and to manage the impact of forest fires. The study relied on a comprehensive field campaign using stratified...
Saved in:
Published in: | Remote sensing of environment 2004-08, Vol.92 (3), p.332-344 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3 |
container_end_page | 344 |
container_issue | 3 |
container_start_page | 332 |
container_title | Remote sensing of environment |
container_volume | 92 |
creator | Kötz, Benjamin Schaepman, Michael Morsdorf, Felix Bowyer, Paul Itten, Klaus Allgöwer, Britta |
description | Imaging spectrometer data were acquired over conifer stands to retrieve spatially distributed information on canopy structure and foliage water content, which may be used to assess fire risk and to manage the impact of forest fires. The study relied on a comprehensive field campaign using stratified systematic unaligned sampling ranging from full spectroradiometric characterization of the canopy to conventional measurements of biochemical and biophysical variables. Airborne imaging spectrometer data (DAIS7915 and ROSIS) were acquired parallel to the ground measurements, describing the canopy reflectance of the observed forest. Coniferous canopies are highly heterogeneous and thus the transfer of incident radiation within the canopy is dominated by its structure. We demonstrated the viability of radiative transfer representation and compared the performance of two hybrid canopy reflectance models, GeoSAIL and FLIGHT, within this heterogeneous medium. Despite the different nature and canopy representation of these models, they yielded similar results. Subsequently, the inversion of a hyperspectral GeoSAIL version demonstrated the feasibility of estimating structure and foliage water content of a coniferous canopy based on radiative transfer modeling. Estimates of the canopy variables showed reasonably accurate results and were validated through ground measurements. |
doi_str_mv | 10.1016/j.rse.2004.05.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_333244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425704001488</els_id><sourcerecordid>14720509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3</originalsourceid><addsrcrecordid>eNp9UcFu1DAQjRBILIUP4OYL3JKOEyfewAlVQJEqIaHerYkz3nqVtYOddNW_Z8JWHDmNNHrvzXtviuK9hEqC7K6PVcpU1QCqgrYC2b4odnKv-xI0qJfFDqBRpapb_bp4k_MRGLHXclccfuHocfGPJJaEITtK4hRHmnw4iLNfHnwQKB5ooRQPFCiuWVgMcX4SLiZBefEnpscgots2vBDOJxJupUnMKc6UFk_5bfHK4ZTp3fO8Ku6_fb2_uS3vfn7_cfPlrrQK-qXUA8ixBaB6gFH2PZJlm5o66RBci9iABKeltVrt686OSvaD1oO2GofONVfFp4vsGdktZ6BgAibrs4nozeSHhOnJnNdkwrSNeR2yaZqmVorJHy9ktv175STm5LOlacK_uY1UuoYWegbKC9CmmHMiZ-bENbCwBLO9wxwNv8Ns7zDQGi6bOR-exTFbnByXvbn6R-ykrFXdMe7zBUfc0qOnZLL1FCyN3KpdzBj9f678ASujo7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14720509</pqid></control><display><type>article</type><title>Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties</title><source>ScienceDirect Freedom Collection</source><creator>Kötz, Benjamin ; Schaepman, Michael ; Morsdorf, Felix ; Bowyer, Paul ; Itten, Klaus ; Allgöwer, Britta</creator><creatorcontrib>Kötz, Benjamin ; Schaepman, Michael ; Morsdorf, Felix ; Bowyer, Paul ; Itten, Klaus ; Allgöwer, Britta</creatorcontrib><description>Imaging spectrometer data were acquired over conifer stands to retrieve spatially distributed information on canopy structure and foliage water content, which may be used to assess fire risk and to manage the impact of forest fires. The study relied on a comprehensive field campaign using stratified systematic unaligned sampling ranging from full spectroradiometric characterization of the canopy to conventional measurements of biochemical and biophysical variables. Airborne imaging spectrometer data (DAIS7915 and ROSIS) were acquired parallel to the ground measurements, describing the canopy reflectance of the observed forest. Coniferous canopies are highly heterogeneous and thus the transfer of incident radiation within the canopy is dominated by its structure. We demonstrated the viability of radiative transfer representation and compared the performance of two hybrid canopy reflectance models, GeoSAIL and FLIGHT, within this heterogeneous medium. Despite the different nature and canopy representation of these models, they yielded similar results. Subsequently, the inversion of a hyperspectral GeoSAIL version demonstrated the feasibility of estimating structure and foliage water content of a coniferous canopy based on radiative transfer modeling. Estimates of the canopy variables showed reasonably accurate results and were validated through ground measurements.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2004.05.015</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>airborne imaging spectrometry ; Animal, plant and microbial ecology ; Applied geophysics ; bidirectional reflectance ; Biological and medical sciences ; canopy structure ; chlorophyll content estimation ; coniferous canopy ; danger assessment ; Earth sciences ; Earth, ocean, space ; equivalent water thickness ; Exact sciences and technology ; foliage water content ; forest fire ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; hyperspectral data ; Imaging spectroscopy ; Internal geophysics ; leaf-area index ; radiative transfer ; reflectance model ; remote-sensing data ; Teledetection and vegetation maps ; vegetation water</subject><ispartof>Remote sensing of environment, 2004-08, Vol.92 (3), p.332-344</ispartof><rights>2004 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3</citedby><cites>FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16112426$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kötz, Benjamin</creatorcontrib><creatorcontrib>Schaepman, Michael</creatorcontrib><creatorcontrib>Morsdorf, Felix</creatorcontrib><creatorcontrib>Bowyer, Paul</creatorcontrib><creatorcontrib>Itten, Klaus</creatorcontrib><creatorcontrib>Allgöwer, Britta</creatorcontrib><title>Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties</title><title>Remote sensing of environment</title><description>Imaging spectrometer data were acquired over conifer stands to retrieve spatially distributed information on canopy structure and foliage water content, which may be used to assess fire risk and to manage the impact of forest fires. The study relied on a comprehensive field campaign using stratified systematic unaligned sampling ranging from full spectroradiometric characterization of the canopy to conventional measurements of biochemical and biophysical variables. Airborne imaging spectrometer data (DAIS7915 and ROSIS) were acquired parallel to the ground measurements, describing the canopy reflectance of the observed forest. Coniferous canopies are highly heterogeneous and thus the transfer of incident radiation within the canopy is dominated by its structure. We demonstrated the viability of radiative transfer representation and compared the performance of two hybrid canopy reflectance models, GeoSAIL and FLIGHT, within this heterogeneous medium. Despite the different nature and canopy representation of these models, they yielded similar results. Subsequently, the inversion of a hyperspectral GeoSAIL version demonstrated the feasibility of estimating structure and foliage water content of a coniferous canopy based on radiative transfer modeling. Estimates of the canopy variables showed reasonably accurate results and were validated through ground measurements.</description><subject>airborne imaging spectrometry</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>bidirectional reflectance</subject><subject>Biological and medical sciences</subject><subject>canopy structure</subject><subject>chlorophyll content estimation</subject><subject>coniferous canopy</subject><subject>danger assessment</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>equivalent water thickness</subject><subject>Exact sciences and technology</subject><subject>foliage water content</subject><subject>forest fire</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>hyperspectral data</subject><subject>Imaging spectroscopy</subject><subject>Internal geophysics</subject><subject>leaf-area index</subject><subject>radiative transfer</subject><subject>reflectance model</subject><subject>remote-sensing data</subject><subject>Teledetection and vegetation maps</subject><subject>vegetation water</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu1DAQjRBILIUP4OYL3JKOEyfewAlVQJEqIaHerYkz3nqVtYOddNW_Z8JWHDmNNHrvzXtviuK9hEqC7K6PVcpU1QCqgrYC2b4odnKv-xI0qJfFDqBRpapb_bp4k_MRGLHXclccfuHocfGPJJaEITtK4hRHmnw4iLNfHnwQKB5ooRQPFCiuWVgMcX4SLiZBefEnpscgots2vBDOJxJupUnMKc6UFk_5bfHK4ZTp3fO8Ku6_fb2_uS3vfn7_cfPlrrQK-qXUA8ixBaB6gFH2PZJlm5o66RBci9iABKeltVrt686OSvaD1oO2GofONVfFp4vsGdktZ6BgAibrs4nozeSHhOnJnNdkwrSNeR2yaZqmVorJHy9ktv175STm5LOlacK_uY1UuoYWegbKC9CmmHMiZ-bENbCwBLO9wxwNv8Ns7zDQGi6bOR-exTFbnByXvbn6R-ykrFXdMe7zBUfc0qOnZLL1FCyN3KpdzBj9f678ASujo7A</recordid><startdate>20040830</startdate><enddate>20040830</enddate><creator>Kötz, Benjamin</creator><creator>Schaepman, Michael</creator><creator>Morsdorf, Felix</creator><creator>Bowyer, Paul</creator><creator>Itten, Klaus</creator><creator>Allgöwer, Britta</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>QVL</scope></search><sort><creationdate>20040830</creationdate><title>Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties</title><author>Kötz, Benjamin ; Schaepman, Michael ; Morsdorf, Felix ; Bowyer, Paul ; Itten, Klaus ; Allgöwer, Britta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>airborne imaging spectrometry</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>bidirectional reflectance</topic><topic>Biological and medical sciences</topic><topic>canopy structure</topic><topic>chlorophyll content estimation</topic><topic>coniferous canopy</topic><topic>danger assessment</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>equivalent water thickness</topic><topic>Exact sciences and technology</topic><topic>foliage water content</topic><topic>forest fire</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>hyperspectral data</topic><topic>Imaging spectroscopy</topic><topic>Internal geophysics</topic><topic>leaf-area index</topic><topic>radiative transfer</topic><topic>reflectance model</topic><topic>remote-sensing data</topic><topic>Teledetection and vegetation maps</topic><topic>vegetation water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kötz, Benjamin</creatorcontrib><creatorcontrib>Schaepman, Michael</creatorcontrib><creatorcontrib>Morsdorf, Felix</creatorcontrib><creatorcontrib>Bowyer, Paul</creatorcontrib><creatorcontrib>Itten, Klaus</creatorcontrib><creatorcontrib>Allgöwer, Britta</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>NARCIS:Publications</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kötz, Benjamin</au><au>Schaepman, Michael</au><au>Morsdorf, Felix</au><au>Bowyer, Paul</au><au>Itten, Klaus</au><au>Allgöwer, Britta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties</atitle><jtitle>Remote sensing of environment</jtitle><date>2004-08-30</date><risdate>2004</risdate><volume>92</volume><issue>3</issue><spage>332</spage><epage>344</epage><pages>332-344</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>Imaging spectrometer data were acquired over conifer stands to retrieve spatially distributed information on canopy structure and foliage water content, which may be used to assess fire risk and to manage the impact of forest fires. The study relied on a comprehensive field campaign using stratified systematic unaligned sampling ranging from full spectroradiometric characterization of the canopy to conventional measurements of biochemical and biophysical variables. Airborne imaging spectrometer data (DAIS7915 and ROSIS) were acquired parallel to the ground measurements, describing the canopy reflectance of the observed forest. Coniferous canopies are highly heterogeneous and thus the transfer of incident radiation within the canopy is dominated by its structure. We demonstrated the viability of radiative transfer representation and compared the performance of two hybrid canopy reflectance models, GeoSAIL and FLIGHT, within this heterogeneous medium. Despite the different nature and canopy representation of these models, they yielded similar results. Subsequently, the inversion of a hyperspectral GeoSAIL version demonstrated the feasibility of estimating structure and foliage water content of a coniferous canopy based on radiative transfer modeling. Estimates of the canopy variables showed reasonably accurate results and were validated through ground measurements.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2004.05.015</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2004-08, Vol.92 (3), p.332-344 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_333244 |
source | ScienceDirect Freedom Collection |
subjects | airborne imaging spectrometry Animal, plant and microbial ecology Applied geophysics bidirectional reflectance Biological and medical sciences canopy structure chlorophyll content estimation coniferous canopy danger assessment Earth sciences Earth, ocean, space equivalent water thickness Exact sciences and technology foliage water content forest fire Fundamental and applied biological sciences. Psychology General aspects. Techniques hyperspectral data Imaging spectroscopy Internal geophysics leaf-area index radiative transfer reflectance model remote-sensing data Teledetection and vegetation maps vegetation water |
title | Radiative transfer modeling within a heterogeneous canopy for estimation of forest fire fuel properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20transfer%20modeling%20within%20a%20heterogeneous%20canopy%20for%20estimation%20of%20forest%20fire%20fuel%20properties&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=K%C3%B6tz,%20Benjamin&rft.date=2004-08-30&rft.volume=92&rft.issue=3&rft.spage=332&rft.epage=344&rft.pages=332-344&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/j.rse.2004.05.015&rft_dat=%3Cproquest_wagen%3E14720509%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-7b01d500e2b0d199aec8717e61fa0f5aa3010f71cc74826cd419b77b7c7ab6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14720509&rft_id=info:pmid/&rfr_iscdi=true |