Loading…
The Lyapunov exponents of the Van der Pol oscillator
Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic approximation of amplitude and period, expressions are derived for the non‐zero Lyapunov exponent f...
Saved in:
Published in: | Mathematical methods in the applied sciences 2005-07, Vol.28 (10), p.1131-1139 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63 |
container_end_page | 1139 |
container_issue | 10 |
container_start_page | 1131 |
container_title | Mathematical methods in the applied sciences |
container_volume | 28 |
creator | Grasman, Johan Verhulst, Ferdinand Shih, Shagi-Di |
description | Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic approximation of amplitude and period, expressions are derived for the non‐zero Lyapunov exponent for both small and large parameter values. Copyright © 2005 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.606 |
format | article |
fullrecord | <record><control><sourceid>wiley_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_339152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MMA606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqUgXiEXxAGlrBPbSbhBBQXa8iMVys3apDYEUieyW9q-PYlS9cZl57DfzK6GkFMKPQoQXM7n2BMg9kiHQpL4lEVin3SARuCzgLJDcuTcNwDElAYdwiZfyhttsFqa8tdT66o0yiycV2pvUW_e0XgzZb2XsvBKl-VFgYvSHpMDjYVTJ1vtkre720n_3h89Dx761yM_C2MQPk-iNEhnNAbUcUwVQIKCsTSY6TQTjGvOBQtApzpRGGWch8BEFqehQuCgRdglV23uCj-VyU09pEGb5U6WmMsiTy3ajVwtrTRFI9UydTIME8qD2nzemjNbOmeVlpXN5w1PQTZNybopWTdVk2ctWaHLsNAWTXNih4soEUw0iRfbd_JCbf6Lk-PxdZvqt3TuFmq9o9H-SBGFEZfTp4GcPt68fgyDoRyGfzGOhf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Lyapunov exponents of the Van der Pol oscillator</title><source>Wiley</source><creator>Grasman, Johan ; Verhulst, Ferdinand ; Shih, Shagi-Di</creator><creatorcontrib>Grasman, Johan ; Verhulst, Ferdinand ; Shih, Shagi-Di</creatorcontrib><description>Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic approximation of amplitude and period, expressions are derived for the non‐zero Lyapunov exponent for both small and large parameter values. Copyright © 2005 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.606</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Exact sciences and technology ; Global analysis, analysis on manifolds ; limit-cycle ; Lyapunov exponents ; Mathematical analysis ; Mathematics ; Ordinary differential equations ; relaxation oscillation ; Sciences and techniques of general use ; series ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Van der Pol oscillator ; vanderpol equation ; weakly oscillation</subject><ispartof>Mathematical methods in the applied sciences, 2005-07, Vol.28 (10), p.1131-1139</ispartof><rights>Copyright © 2005 John Wiley & Sons, Ltd.</rights><rights>2005 INIST-CNRS</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63</citedby><cites>FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16796462$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grasman, Johan</creatorcontrib><creatorcontrib>Verhulst, Ferdinand</creatorcontrib><creatorcontrib>Shih, Shagi-Di</creatorcontrib><title>The Lyapunov exponents of the Van der Pol oscillator</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic approximation of amplitude and period, expressions are derived for the non‐zero Lyapunov exponent for both small and large parameter values. Copyright © 2005 John Wiley & Sons, Ltd.</description><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>limit-cycle</subject><subject>Lyapunov exponents</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>relaxation oscillation</subject><subject>Sciences and techniques of general use</subject><subject>series</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Van der Pol oscillator</subject><subject>vanderpol equation</subject><subject>weakly oscillation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqUgXiEXxAGlrBPbSbhBBQXa8iMVys3apDYEUieyW9q-PYlS9cZl57DfzK6GkFMKPQoQXM7n2BMg9kiHQpL4lEVin3SARuCzgLJDcuTcNwDElAYdwiZfyhttsFqa8tdT66o0yiycV2pvUW_e0XgzZb2XsvBKl-VFgYvSHpMDjYVTJ1vtkre720n_3h89Dx761yM_C2MQPk-iNEhnNAbUcUwVQIKCsTSY6TQTjGvOBQtApzpRGGWch8BEFqehQuCgRdglV23uCj-VyU09pEGb5U6WmMsiTy3ajVwtrTRFI9UydTIME8qD2nzemjNbOmeVlpXN5w1PQTZNybopWTdVk2ctWaHLsNAWTXNih4soEUw0iRfbd_JCbf6Lk-PxdZvqt3TuFmq9o9H-SBGFEZfTp4GcPt68fgyDoRyGfzGOhf8</recordid><startdate>20050710</startdate><enddate>20050710</enddate><creator>Grasman, Johan</creator><creator>Verhulst, Ferdinand</creator><creator>Shih, Shagi-Di</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>QVL</scope></search><sort><creationdate>20050710</creationdate><title>The Lyapunov exponents of the Van der Pol oscillator</title><author>Grasman, Johan ; Verhulst, Ferdinand ; Shih, Shagi-Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>limit-cycle</topic><topic>Lyapunov exponents</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>relaxation oscillation</topic><topic>Sciences and techniques of general use</topic><topic>series</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Van der Pol oscillator</topic><topic>vanderpol equation</topic><topic>weakly oscillation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grasman, Johan</creatorcontrib><creatorcontrib>Verhulst, Ferdinand</creatorcontrib><creatorcontrib>Shih, Shagi-Di</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>NARCIS:Publications</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grasman, Johan</au><au>Verhulst, Ferdinand</au><au>Shih, Shagi-Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lyapunov exponents of the Van der Pol oscillator</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2005-07-10</date><risdate>2005</risdate><volume>28</volume><issue>10</issue><spage>1131</spage><epage>1139</epage><pages>1131-1139</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic approximation of amplitude and period, expressions are derived for the non‐zero Lyapunov exponent for both small and large parameter values. Copyright © 2005 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.606</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2005-07, Vol.28 (10), p.1131-1139 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_339152 |
source | Wiley |
subjects | Exact sciences and technology Global analysis, analysis on manifolds limit-cycle Lyapunov exponents Mathematical analysis Mathematics Ordinary differential equations relaxation oscillation Sciences and techniques of general use series Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds Van der Pol oscillator vanderpol equation weakly oscillation |
title | The Lyapunov exponents of the Van der Pol oscillator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lyapunov%20exponents%20of%20the%20Van%20der%20Pol%20oscillator&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Grasman,%20Johan&rft.date=2005-07-10&rft.volume=28&rft.issue=10&rft.spage=1131&rft.epage=1139&rft.pages=1131-1139&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.606&rft_dat=%3Cwiley_wagen%3EMMA606%3C/wiley_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |