Loading…

The Lyapunov exponents of the Van der Pol oscillator

Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic approximation of amplitude and period, expressions are derived for the non‐zero Lyapunov exponent f...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2005-07, Vol.28 (10), p.1131-1139
Main Authors: Grasman, Johan, Verhulst, Ferdinand, Shih, Shagi-Di
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63
cites cdi_FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63
container_end_page 1139
container_issue 10
container_start_page 1131
container_title Mathematical methods in the applied sciences
container_volume 28
creator Grasman, Johan
Verhulst, Ferdinand
Shih, Shagi-Di
description Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic approximation of amplitude and period, expressions are derived for the non‐zero Lyapunov exponent for both small and large parameter values. Copyright © 2005 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.606
format article
fullrecord <record><control><sourceid>wiley_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_339152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MMA606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqUgXiEXxAGlrBPbSbhBBQXa8iMVys3apDYEUieyW9q-PYlS9cZl57DfzK6GkFMKPQoQXM7n2BMg9kiHQpL4lEVin3SARuCzgLJDcuTcNwDElAYdwiZfyhttsFqa8tdT66o0yiycV2pvUW_e0XgzZb2XsvBKl-VFgYvSHpMDjYVTJ1vtkre720n_3h89Dx761yM_C2MQPk-iNEhnNAbUcUwVQIKCsTSY6TQTjGvOBQtApzpRGGWch8BEFqehQuCgRdglV23uCj-VyU09pEGb5U6WmMsiTy3ajVwtrTRFI9UydTIME8qD2nzemjNbOmeVlpXN5w1PQTZNybopWTdVk2ctWaHLsNAWTXNih4soEUw0iRfbd_JCbf6Lk-PxdZvqt3TuFmq9o9H-SBGFEZfTp4GcPt68fgyDoRyGfzGOhf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Lyapunov exponents of the Van der Pol oscillator</title><source>Wiley</source><creator>Grasman, Johan ; Verhulst, Ferdinand ; Shih, Shagi-Di</creator><creatorcontrib>Grasman, Johan ; Verhulst, Ferdinand ; Shih, Shagi-Di</creatorcontrib><description>Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic approximation of amplitude and period, expressions are derived for the non‐zero Lyapunov exponent for both small and large parameter values. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.606</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Exact sciences and technology ; Global analysis, analysis on manifolds ; limit-cycle ; Lyapunov exponents ; Mathematical analysis ; Mathematics ; Ordinary differential equations ; relaxation oscillation ; Sciences and techniques of general use ; series ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Van der Pol oscillator ; vanderpol equation ; weakly oscillation</subject><ispartof>Mathematical methods in the applied sciences, 2005-07, Vol.28 (10), p.1131-1139</ispartof><rights>Copyright © 2005 John Wiley &amp; Sons, Ltd.</rights><rights>2005 INIST-CNRS</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63</citedby><cites>FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16796462$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grasman, Johan</creatorcontrib><creatorcontrib>Verhulst, Ferdinand</creatorcontrib><creatorcontrib>Shih, Shagi-Di</creatorcontrib><title>The Lyapunov exponents of the Van der Pol oscillator</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic approximation of amplitude and period, expressions are derived for the non‐zero Lyapunov exponent for both small and large parameter values. Copyright © 2005 John Wiley &amp; Sons, Ltd.</description><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>limit-cycle</subject><subject>Lyapunov exponents</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>relaxation oscillation</subject><subject>Sciences and techniques of general use</subject><subject>series</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Van der Pol oscillator</subject><subject>vanderpol equation</subject><subject>weakly oscillation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqUgXiEXxAGlrBPbSbhBBQXa8iMVys3apDYEUieyW9q-PYlS9cZl57DfzK6GkFMKPQoQXM7n2BMg9kiHQpL4lEVin3SARuCzgLJDcuTcNwDElAYdwiZfyhttsFqa8tdT66o0yiycV2pvUW_e0XgzZb2XsvBKl-VFgYvSHpMDjYVTJ1vtkre720n_3h89Dx761yM_C2MQPk-iNEhnNAbUcUwVQIKCsTSY6TQTjGvOBQtApzpRGGWch8BEFqehQuCgRdglV23uCj-VyU09pEGb5U6WmMsiTy3ajVwtrTRFI9UydTIME8qD2nzemjNbOmeVlpXN5w1PQTZNybopWTdVk2ctWaHLsNAWTXNih4soEUw0iRfbd_JCbf6Lk-PxdZvqt3TuFmq9o9H-SBGFEZfTp4GcPt68fgyDoRyGfzGOhf8</recordid><startdate>20050710</startdate><enddate>20050710</enddate><creator>Grasman, Johan</creator><creator>Verhulst, Ferdinand</creator><creator>Shih, Shagi-Di</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>QVL</scope></search><sort><creationdate>20050710</creationdate><title>The Lyapunov exponents of the Van der Pol oscillator</title><author>Grasman, Johan ; Verhulst, Ferdinand ; Shih, Shagi-Di</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>limit-cycle</topic><topic>Lyapunov exponents</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>relaxation oscillation</topic><topic>Sciences and techniques of general use</topic><topic>series</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Van der Pol oscillator</topic><topic>vanderpol equation</topic><topic>weakly oscillation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grasman, Johan</creatorcontrib><creatorcontrib>Verhulst, Ferdinand</creatorcontrib><creatorcontrib>Shih, Shagi-Di</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>NARCIS:Publications</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grasman, Johan</au><au>Verhulst, Ferdinand</au><au>Shih, Shagi-Di</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lyapunov exponents of the Van der Pol oscillator</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2005-07-10</date><risdate>2005</risdate><volume>28</volume><issue>10</issue><spage>1131</spage><epage>1139</epage><pages>1131-1139</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Lyapunov exponents characterize the dynamics of a system near its attractor. For the Van der Pol oscillator these are quantities for which an approximation should be at hand. Similar to the asymptotic approximation of amplitude and period, expressions are derived for the non‐zero Lyapunov exponent for both small and large parameter values. Copyright © 2005 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.606</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2005-07, Vol.28 (10), p.1131-1139
issn 0170-4214
1099-1476
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_339152
source Wiley
subjects Exact sciences and technology
Global analysis, analysis on manifolds
limit-cycle
Lyapunov exponents
Mathematical analysis
Mathematics
Ordinary differential equations
relaxation oscillation
Sciences and techniques of general use
series
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Van der Pol oscillator
vanderpol equation
weakly oscillation
title The Lyapunov exponents of the Van der Pol oscillator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lyapunov%20exponents%20of%20the%20Van%20der%20Pol%20oscillator&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Grasman,%20Johan&rft.date=2005-07-10&rft.volume=28&rft.issue=10&rft.spage=1131&rft.epage=1139&rft.pages=1131-1139&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.606&rft_dat=%3Cwiley_wagen%3EMMA606%3C/wiley_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3806-597b2bd180af881e009a644b2dfbc645f556420fbf9ea7c553046c8b3ea050f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true