Loading…

Flexible use of patch-leaving mechanisms in a parasitoid wasp

Classical optimal-foraging theory predicts that a parasitoid is less likely to leave a patch after a host encounter when the host distribution is aggregated, whereas a parasitoid is more likely to leave after a host encounter when the host distribution is regular. Field data on host distributions in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of insect behavior 2006-03, Vol.19 (2), p.155-170
Main Authors: BURGER, Joep M. S, YING HUANG, HEMERIK, Lia, VAN LENTEREN, Joop C, VET, Louise E. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Classical optimal-foraging theory predicts that a parasitoid is less likely to leave a patch after a host encounter when the host distribution is aggregated, whereas a parasitoid is more likely to leave after a host encounter when the host distribution is regular. Field data on host distributions in the area of origin of the whitefly parasitoid Encarsia formosa showed that whiteflies aggregate at several spatial scales. However, infested leaves most likely contained a single host. This suggests that a host encounter is not enough to decide when to leave. We therefore tested the effect of host distribution and parasitoid experience on patch-leaving behavior. Each parasitoid was observed for several consecutive days in a three-dimensional arena with leaflets containing on average one host per leaflet in an either regular or aggregated host distribution. A proportional hazards model showed that a host encounter decreased the leaving tendency on a leaflet with one host when the time since the latest host encounter was short, but increased the leaving tendency when the time since the latest host encounter was long, independent of host distribution. We conclude that a parasitoid can switch from decreasing to increasing its tendency to leave a patch after a host encounter. We propose two hypotheses that may explain the evolution of such a switching mechanism.[PUBLICATION ABSTRACT]
ISSN:0892-7553
1572-8889
DOI:10.1007/s10905-006-9014-7