Loading…
Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry
Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Gl...
Saved in:
Published in: | Plant physiology (Bethesda) 2006-03, Vol.140 (3), p.1047-1058 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63 |
---|---|
cites | cdi_FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63 |
container_end_page | 1058 |
container_issue | 3 |
container_start_page | 1047 |
container_title | Plant physiology (Bethesda) |
container_volume | 140 |
creator | Lunkenbein, Stefan Bellido, MariLuz Aharoni, Asaph Salentijn, Elma M.J Kaldenhoff, Ralf Coiner, Heather A Muñoz-Blanco, Juan Schwab, Wilfried |
description | Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria x ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening. |
doi_str_mv | 10.1104/pp.105.074955 |
format | article |
fullrecord | <record><control><sourceid>jstor_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_347417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20205668</jstor_id><sourcerecordid>20205668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEotvCkSOQC9yy-Ntxb2hpC1IRiLJna5LYi6vEDnai1fLr8ZJVe-Q0o5lnXnn8TlG8wmiNMWIfxnGNEV8jyRTnT4oV5pRUhLP6abFCKOeortVZcZ7SPUIIU8yeF2dYMEaFoqtiv3HewwCTKb-aCZrQuzSUzpc_3Gi887vyOs5uWpebXxChnUx0f2BywZfBllBuP32vbvq5DclcPiotlUM_RfDJmgjJlDaGobzLlX1jYjy8KJ5Z6JN5eYoXxfb66ufmc3X77ebL5uNt1XKFp4qoTopWQCepwsIIxDk3tkY1UbJlqsPKAiEUwNoOMcNU21BGoaHGSsQaQS-Ky0V3D7t_-xivPcTWJR3A6d41EeJB7-eofX8M49wkTZlkWObh98vwGMPv2aRJDy61pu_BmzAnLaSkRNX_B7GqaZ39yWC1gG0MKUVj9RjdcHwBRvropx7HnHK9-Jn5NyfhuRlM90ifDMzAuxMAqYXe5h8_7vbASa6YxCRzrxfuPk0hPvQJIogLUef-26VvIWjYxayxvSP5XhBGIp8QoX8BPm69-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19838955</pqid></control><display><type>article</type><title>Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Lunkenbein, Stefan ; Bellido, MariLuz ; Aharoni, Asaph ; Salentijn, Elma M.J ; Kaldenhoff, Ralf ; Coiner, Heather A ; Muñoz-Blanco, Juan ; Schwab, Wilfried</creator><creatorcontrib>Lunkenbein, Stefan ; Bellido, MariLuz ; Aharoni, Asaph ; Salentijn, Elma M.J ; Kaldenhoff, Ralf ; Coiner, Heather A ; Muñoz-Blanco, Juan ; Schwab, Wilfried</creatorcontrib><description>Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria x ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.105.074955</identifier><identifier>PMID: 16443693</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; Amino Acid Sequence ; amino acid sequences ; arabidopsis-thaliana ; Auxins ; Biochemical Processes and Macromolecular Structures ; Biological and medical sciences ; Cauliflower mosaic virus ; Cell culture techniques ; Cinnamates - chemistry ; Cinnamates - metabolism ; cinnamic acid ; complementary DNA ; Coumaric acids ; cultivated strawberries ; dna microarrays ; DNA, Complementary - isolation & purification ; Economic plant physiology ; enzyme activity ; enzyme kinetics ; Enzymes ; Esters ; Esters - chemistry ; Esters - metabolism ; flavonoid 3-o-glucosyltransferase ; Fragaria ; Fragaria - enzymology ; Fragaria - genetics ; Fragaria - growth & development ; Fragaria ananassa ; fragaria x ananassa ; Fructification, ripening. Postharvest physiology ; Fruit - enzymology ; Fruit - genetics ; Fruit - growth & development ; Fruits ; fruits (plant anatomy) ; Fundamental and applied biological sciences. Psychology ; gene expression regulation ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; glucosyltransferases ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Glucosyltransferases - physiology ; glycosyltransferases ; Growth and development ; heterologous expression ; hexosyltransferases ; Indoleacetic Acids - metabolism ; Kinetics ; Messenger RNA ; Molecular Sequence Data ; molecular-cloning ; o-glucosyltransferase ; Oxidative Stress ; pectate lyase ; Phylogeny ; plant biochemistry ; plant genetics ; plant physiology ; plant proteins ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plants, Genetically Modified - metabolism ; recombinant fusion proteins ; Recombinant Fusion Proteins - metabolism ; Ripening ; Sequence Alignment ; strawberries ; substrate-specificity ; Transgenic plants ; UDP-glucose:cinnamate glucosyltransferase ; Uridine Diphosphate Glucose - metabolism</subject><ispartof>Plant physiology (Bethesda), 2006-03, Vol.140 (3), p.1047-1058</ispartof><rights>Copyright 2006 American Society of Plant Biologists</rights><rights>2006 INIST-CNRS</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63</citedby><cites>FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20205668$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20205668$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17594712$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16443693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lunkenbein, Stefan</creatorcontrib><creatorcontrib>Bellido, MariLuz</creatorcontrib><creatorcontrib>Aharoni, Asaph</creatorcontrib><creatorcontrib>Salentijn, Elma M.J</creatorcontrib><creatorcontrib>Kaldenhoff, Ralf</creatorcontrib><creatorcontrib>Coiner, Heather A</creatorcontrib><creatorcontrib>Muñoz-Blanco, Juan</creatorcontrib><creatorcontrib>Schwab, Wilfried</creatorcontrib><title>Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria x ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>arabidopsis-thaliana</subject><subject>Auxins</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>Biological and medical sciences</subject><subject>Cauliflower mosaic virus</subject><subject>Cell culture techniques</subject><subject>Cinnamates - chemistry</subject><subject>Cinnamates - metabolism</subject><subject>cinnamic acid</subject><subject>complementary DNA</subject><subject>Coumaric acids</subject><subject>cultivated strawberries</subject><subject>dna microarrays</subject><subject>DNA, Complementary - isolation & purification</subject><subject>Economic plant physiology</subject><subject>enzyme activity</subject><subject>enzyme kinetics</subject><subject>Enzymes</subject><subject>Esters</subject><subject>Esters - chemistry</subject><subject>Esters - metabolism</subject><subject>flavonoid 3-o-glucosyltransferase</subject><subject>Fragaria</subject><subject>Fragaria - enzymology</subject><subject>Fragaria - genetics</subject><subject>Fragaria - growth & development</subject><subject>Fragaria ananassa</subject><subject>fragaria x ananassa</subject><subject>Fructification, ripening. Postharvest physiology</subject><subject>Fruit - enzymology</subject><subject>Fruit - genetics</subject><subject>Fruit - growth & development</subject><subject>Fruits</subject><subject>fruits (plant anatomy)</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>glucosyltransferases</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Glucosyltransferases - physiology</subject><subject>glycosyltransferases</subject><subject>Growth and development</subject><subject>heterologous expression</subject><subject>hexosyltransferases</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Kinetics</subject><subject>Messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>molecular-cloning</subject><subject>o-glucosyltransferase</subject><subject>Oxidative Stress</subject><subject>pectate lyase</subject><subject>Phylogeny</subject><subject>plant biochemistry</subject><subject>plant genetics</subject><subject>plant physiology</subject><subject>plant proteins</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>recombinant fusion proteins</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Ripening</subject><subject>Sequence Alignment</subject><subject>strawberries</subject><subject>substrate-specificity</subject><subject>Transgenic plants</subject><subject>UDP-glucose:cinnamate glucosyltransferase</subject><subject>Uridine Diphosphate Glucose - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhiMEotvCkSOQC9yy-Ntxb2hpC1IRiLJna5LYi6vEDnai1fLr8ZJVe-Q0o5lnXnn8TlG8wmiNMWIfxnGNEV8jyRTnT4oV5pRUhLP6abFCKOeortVZcZ7SPUIIU8yeF2dYMEaFoqtiv3HewwCTKb-aCZrQuzSUzpc_3Gi887vyOs5uWpebXxChnUx0f2BywZfBllBuP32vbvq5DclcPiotlUM_RfDJmgjJlDaGobzLlX1jYjy8KJ5Z6JN5eYoXxfb66ufmc3X77ebL5uNt1XKFp4qoTopWQCepwsIIxDk3tkY1UbJlqsPKAiEUwNoOMcNU21BGoaHGSsQaQS-Ky0V3D7t_-xivPcTWJR3A6d41EeJB7-eofX8M49wkTZlkWObh98vwGMPv2aRJDy61pu_BmzAnLaSkRNX_B7GqaZ39yWC1gG0MKUVj9RjdcHwBRvropx7HnHK9-Jn5NyfhuRlM90ifDMzAuxMAqYXe5h8_7vbASa6YxCRzrxfuPk0hPvQJIogLUef-26VvIWjYxayxvSP5XhBGIp8QoX8BPm69-A</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Lunkenbein, Stefan</creator><creator>Bellido, MariLuz</creator><creator>Aharoni, Asaph</creator><creator>Salentijn, Elma M.J</creator><creator>Kaldenhoff, Ralf</creator><creator>Coiner, Heather A</creator><creator>Muñoz-Blanco, Juan</creator><creator>Schwab, Wilfried</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>QVL</scope></search><sort><creationdate>20060301</creationdate><title>Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry</title><author>Lunkenbein, Stefan ; Bellido, MariLuz ; Aharoni, Asaph ; Salentijn, Elma M.J ; Kaldenhoff, Ralf ; Coiner, Heather A ; Muñoz-Blanco, Juan ; Schwab, Wilfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>arabidopsis-thaliana</topic><topic>Auxins</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>Biological and medical sciences</topic><topic>Cauliflower mosaic virus</topic><topic>Cell culture techniques</topic><topic>Cinnamates - chemistry</topic><topic>Cinnamates - metabolism</topic><topic>cinnamic acid</topic><topic>complementary DNA</topic><topic>Coumaric acids</topic><topic>cultivated strawberries</topic><topic>dna microarrays</topic><topic>DNA, Complementary - isolation & purification</topic><topic>Economic plant physiology</topic><topic>enzyme activity</topic><topic>enzyme kinetics</topic><topic>Enzymes</topic><topic>Esters</topic><topic>Esters - chemistry</topic><topic>Esters - metabolism</topic><topic>flavonoid 3-o-glucosyltransferase</topic><topic>Fragaria</topic><topic>Fragaria - enzymology</topic><topic>Fragaria - genetics</topic><topic>Fragaria - growth & development</topic><topic>Fragaria ananassa</topic><topic>fragaria x ananassa</topic><topic>Fructification, ripening. Postharvest physiology</topic><topic>Fruit - enzymology</topic><topic>Fruit - genetics</topic><topic>Fruit - growth & development</topic><topic>Fruits</topic><topic>fruits (plant anatomy)</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>glucosyltransferases</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Glucosyltransferases - physiology</topic><topic>glycosyltransferases</topic><topic>Growth and development</topic><topic>heterologous expression</topic><topic>hexosyltransferases</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Kinetics</topic><topic>Messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>molecular-cloning</topic><topic>o-glucosyltransferase</topic><topic>Oxidative Stress</topic><topic>pectate lyase</topic><topic>Phylogeny</topic><topic>plant biochemistry</topic><topic>plant genetics</topic><topic>plant physiology</topic><topic>plant proteins</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>recombinant fusion proteins</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Ripening</topic><topic>Sequence Alignment</topic><topic>strawberries</topic><topic>substrate-specificity</topic><topic>Transgenic plants</topic><topic>UDP-glucose:cinnamate glucosyltransferase</topic><topic>Uridine Diphosphate Glucose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lunkenbein, Stefan</creatorcontrib><creatorcontrib>Bellido, MariLuz</creatorcontrib><creatorcontrib>Aharoni, Asaph</creatorcontrib><creatorcontrib>Salentijn, Elma M.J</creatorcontrib><creatorcontrib>Kaldenhoff, Ralf</creatorcontrib><creatorcontrib>Coiner, Heather A</creatorcontrib><creatorcontrib>Muñoz-Blanco, Juan</creatorcontrib><creatorcontrib>Schwab, Wilfried</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NARCIS:Publications</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lunkenbein, Stefan</au><au>Bellido, MariLuz</au><au>Aharoni, Asaph</au><au>Salentijn, Elma M.J</au><au>Kaldenhoff, Ralf</au><au>Coiner, Heather A</au><au>Muñoz-Blanco, Juan</au><au>Schwab, Wilfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>140</volume><issue>3</issue><spage>1047</spage><epage>1058</epage><pages>1047-1058</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria x ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>16443693</pmid><doi>10.1104/pp.105.074955</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2006-03, Vol.140 (3), p.1047-1058 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_347417 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Agronomy. Soil science and plant productions Amino Acid Sequence amino acid sequences arabidopsis-thaliana Auxins Biochemical Processes and Macromolecular Structures Biological and medical sciences Cauliflower mosaic virus Cell culture techniques Cinnamates - chemistry Cinnamates - metabolism cinnamic acid complementary DNA Coumaric acids cultivated strawberries dna microarrays DNA, Complementary - isolation & purification Economic plant physiology enzyme activity enzyme kinetics Enzymes Esters Esters - chemistry Esters - metabolism flavonoid 3-o-glucosyltransferase Fragaria Fragaria - enzymology Fragaria - genetics Fragaria - growth & development Fragaria ananassa fragaria x ananassa Fructification, ripening. Postharvest physiology Fruit - enzymology Fruit - genetics Fruit - growth & development Fruits fruits (plant anatomy) Fundamental and applied biological sciences. Psychology gene expression regulation Gene Expression Regulation, Developmental Gene Expression Regulation, Plant glucosyltransferases Glucosyltransferases - genetics Glucosyltransferases - metabolism Glucosyltransferases - physiology glycosyltransferases Growth and development heterologous expression hexosyltransferases Indoleacetic Acids - metabolism Kinetics Messenger RNA Molecular Sequence Data molecular-cloning o-glucosyltransferase Oxidative Stress pectate lyase Phylogeny plant biochemistry plant genetics plant physiology plant proteins Plant Proteins - genetics Plant Proteins - metabolism Plants Plants, Genetically Modified - metabolism recombinant fusion proteins Recombinant Fusion Proteins - metabolism Ripening Sequence Alignment strawberries substrate-specificity Transgenic plants UDP-glucose:cinnamate glucosyltransferase Uridine Diphosphate Glucose - metabolism |
title | Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cinnamate%20Metabolism%20in%20Ripening%20Fruit.%20Characterization%20of%20a%20UDP-Glucose:Cinnamate%20Glucosyltransferase%20from%20Strawberry&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Lunkenbein,%20Stefan&rft.date=2006-03-01&rft.volume=140&rft.issue=3&rft.spage=1047&rft.epage=1058&rft.pages=1047-1058&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.105.074955&rft_dat=%3Cjstor_wagen%3E20205668%3C/jstor_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19838955&rft_id=info:pmid/16443693&rft_jstor_id=20205668&rfr_iscdi=true |