Loading…

Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry

Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Gl...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2006-03, Vol.140 (3), p.1047-1058
Main Authors: Lunkenbein, Stefan, Bellido, MariLuz, Aharoni, Asaph, Salentijn, Elma M.J, Kaldenhoff, Ralf, Coiner, Heather A, Muñoz-Blanco, Juan, Schwab, Wilfried
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63
cites cdi_FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63
container_end_page 1058
container_issue 3
container_start_page 1047
container_title Plant physiology (Bethesda)
container_volume 140
creator Lunkenbein, Stefan
Bellido, MariLuz
Aharoni, Asaph
Salentijn, Elma M.J
Kaldenhoff, Ralf
Coiner, Heather A
Muñoz-Blanco, Juan
Schwab, Wilfried
description Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria x ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening.
doi_str_mv 10.1104/pp.105.074955
format article
fullrecord <record><control><sourceid>jstor_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_347417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20205668</jstor_id><sourcerecordid>20205668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEotvCkSOQC9yy-Ntxb2hpC1IRiLJna5LYi6vEDnai1fLr8ZJVe-Q0o5lnXnn8TlG8wmiNMWIfxnGNEV8jyRTnT4oV5pRUhLP6abFCKOeortVZcZ7SPUIIU8yeF2dYMEaFoqtiv3HewwCTKb-aCZrQuzSUzpc_3Gi887vyOs5uWpebXxChnUx0f2BywZfBllBuP32vbvq5DclcPiotlUM_RfDJmgjJlDaGobzLlX1jYjy8KJ5Z6JN5eYoXxfb66ufmc3X77ebL5uNt1XKFp4qoTopWQCepwsIIxDk3tkY1UbJlqsPKAiEUwNoOMcNU21BGoaHGSsQaQS-Ky0V3D7t_-xivPcTWJR3A6d41EeJB7-eofX8M49wkTZlkWObh98vwGMPv2aRJDy61pu_BmzAnLaSkRNX_B7GqaZ39yWC1gG0MKUVj9RjdcHwBRvropx7HnHK9-Jn5NyfhuRlM90ifDMzAuxMAqYXe5h8_7vbASa6YxCRzrxfuPk0hPvQJIogLUef-26VvIWjYxayxvSP5XhBGIp8QoX8BPm69-A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19838955</pqid></control><display><type>article</type><title>Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Lunkenbein, Stefan ; Bellido, MariLuz ; Aharoni, Asaph ; Salentijn, Elma M.J ; Kaldenhoff, Ralf ; Coiner, Heather A ; Muñoz-Blanco, Juan ; Schwab, Wilfried</creator><creatorcontrib>Lunkenbein, Stefan ; Bellido, MariLuz ; Aharoni, Asaph ; Salentijn, Elma M.J ; Kaldenhoff, Ralf ; Coiner, Heather A ; Muñoz-Blanco, Juan ; Schwab, Wilfried</creatorcontrib><description>Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria x ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.105.074955</identifier><identifier>PMID: 16443693</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; Amino Acid Sequence ; amino acid sequences ; arabidopsis-thaliana ; Auxins ; Biochemical Processes and Macromolecular Structures ; Biological and medical sciences ; Cauliflower mosaic virus ; Cell culture techniques ; Cinnamates - chemistry ; Cinnamates - metabolism ; cinnamic acid ; complementary DNA ; Coumaric acids ; cultivated strawberries ; dna microarrays ; DNA, Complementary - isolation &amp; purification ; Economic plant physiology ; enzyme activity ; enzyme kinetics ; Enzymes ; Esters ; Esters - chemistry ; Esters - metabolism ; flavonoid 3-o-glucosyltransferase ; Fragaria ; Fragaria - enzymology ; Fragaria - genetics ; Fragaria - growth &amp; development ; Fragaria ananassa ; fragaria x ananassa ; Fructification, ripening. Postharvest physiology ; Fruit - enzymology ; Fruit - genetics ; Fruit - growth &amp; development ; Fruits ; fruits (plant anatomy) ; Fundamental and applied biological sciences. Psychology ; gene expression regulation ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; glucosyltransferases ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Glucosyltransferases - physiology ; glycosyltransferases ; Growth and development ; heterologous expression ; hexosyltransferases ; Indoleacetic Acids - metabolism ; Kinetics ; Messenger RNA ; Molecular Sequence Data ; molecular-cloning ; o-glucosyltransferase ; Oxidative Stress ; pectate lyase ; Phylogeny ; plant biochemistry ; plant genetics ; plant physiology ; plant proteins ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Plants, Genetically Modified - metabolism ; recombinant fusion proteins ; Recombinant Fusion Proteins - metabolism ; Ripening ; Sequence Alignment ; strawberries ; substrate-specificity ; Transgenic plants ; UDP-glucose:cinnamate glucosyltransferase ; Uridine Diphosphate Glucose - metabolism</subject><ispartof>Plant physiology (Bethesda), 2006-03, Vol.140 (3), p.1047-1058</ispartof><rights>Copyright 2006 American Society of Plant Biologists</rights><rights>2006 INIST-CNRS</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63</citedby><cites>FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20205668$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20205668$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17594712$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16443693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lunkenbein, Stefan</creatorcontrib><creatorcontrib>Bellido, MariLuz</creatorcontrib><creatorcontrib>Aharoni, Asaph</creatorcontrib><creatorcontrib>Salentijn, Elma M.J</creatorcontrib><creatorcontrib>Kaldenhoff, Ralf</creatorcontrib><creatorcontrib>Coiner, Heather A</creatorcontrib><creatorcontrib>Muñoz-Blanco, Juan</creatorcontrib><creatorcontrib>Schwab, Wilfried</creatorcontrib><title>Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria x ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>arabidopsis-thaliana</subject><subject>Auxins</subject><subject>Biochemical Processes and Macromolecular Structures</subject><subject>Biological and medical sciences</subject><subject>Cauliflower mosaic virus</subject><subject>Cell culture techniques</subject><subject>Cinnamates - chemistry</subject><subject>Cinnamates - metabolism</subject><subject>cinnamic acid</subject><subject>complementary DNA</subject><subject>Coumaric acids</subject><subject>cultivated strawberries</subject><subject>dna microarrays</subject><subject>DNA, Complementary - isolation &amp; purification</subject><subject>Economic plant physiology</subject><subject>enzyme activity</subject><subject>enzyme kinetics</subject><subject>Enzymes</subject><subject>Esters</subject><subject>Esters - chemistry</subject><subject>Esters - metabolism</subject><subject>flavonoid 3-o-glucosyltransferase</subject><subject>Fragaria</subject><subject>Fragaria - enzymology</subject><subject>Fragaria - genetics</subject><subject>Fragaria - growth &amp; development</subject><subject>Fragaria ananassa</subject><subject>fragaria x ananassa</subject><subject>Fructification, ripening. Postharvest physiology</subject><subject>Fruit - enzymology</subject><subject>Fruit - genetics</subject><subject>Fruit - growth &amp; development</subject><subject>Fruits</subject><subject>fruits (plant anatomy)</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression regulation</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>glucosyltransferases</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Glucosyltransferases - physiology</subject><subject>glycosyltransferases</subject><subject>Growth and development</subject><subject>heterologous expression</subject><subject>hexosyltransferases</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Kinetics</subject><subject>Messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>molecular-cloning</subject><subject>o-glucosyltransferase</subject><subject>Oxidative Stress</subject><subject>pectate lyase</subject><subject>Phylogeny</subject><subject>plant biochemistry</subject><subject>plant genetics</subject><subject>plant physiology</subject><subject>plant proteins</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>recombinant fusion proteins</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Ripening</subject><subject>Sequence Alignment</subject><subject>strawberries</subject><subject>substrate-specificity</subject><subject>Transgenic plants</subject><subject>UDP-glucose:cinnamate glucosyltransferase</subject><subject>Uridine Diphosphate Glucose - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhiMEotvCkSOQC9yy-Ntxb2hpC1IRiLJna5LYi6vEDnai1fLr8ZJVe-Q0o5lnXnn8TlG8wmiNMWIfxnGNEV8jyRTnT4oV5pRUhLP6abFCKOeortVZcZ7SPUIIU8yeF2dYMEaFoqtiv3HewwCTKb-aCZrQuzSUzpc_3Gi887vyOs5uWpebXxChnUx0f2BywZfBllBuP32vbvq5DclcPiotlUM_RfDJmgjJlDaGobzLlX1jYjy8KJ5Z6JN5eYoXxfb66ufmc3X77ebL5uNt1XKFp4qoTopWQCepwsIIxDk3tkY1UbJlqsPKAiEUwNoOMcNU21BGoaHGSsQaQS-Ky0V3D7t_-xivPcTWJR3A6d41EeJB7-eofX8M49wkTZlkWObh98vwGMPv2aRJDy61pu_BmzAnLaSkRNX_B7GqaZ39yWC1gG0MKUVj9RjdcHwBRvropx7HnHK9-Jn5NyfhuRlM90ifDMzAuxMAqYXe5h8_7vbASa6YxCRzrxfuPk0hPvQJIogLUef-26VvIWjYxayxvSP5XhBGIp8QoX8BPm69-A</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Lunkenbein, Stefan</creator><creator>Bellido, MariLuz</creator><creator>Aharoni, Asaph</creator><creator>Salentijn, Elma M.J</creator><creator>Kaldenhoff, Ralf</creator><creator>Coiner, Heather A</creator><creator>Muñoz-Blanco, Juan</creator><creator>Schwab, Wilfried</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>QVL</scope></search><sort><creationdate>20060301</creationdate><title>Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry</title><author>Lunkenbein, Stefan ; Bellido, MariLuz ; Aharoni, Asaph ; Salentijn, Elma M.J ; Kaldenhoff, Ralf ; Coiner, Heather A ; Muñoz-Blanco, Juan ; Schwab, Wilfried</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>arabidopsis-thaliana</topic><topic>Auxins</topic><topic>Biochemical Processes and Macromolecular Structures</topic><topic>Biological and medical sciences</topic><topic>Cauliflower mosaic virus</topic><topic>Cell culture techniques</topic><topic>Cinnamates - chemistry</topic><topic>Cinnamates - metabolism</topic><topic>cinnamic acid</topic><topic>complementary DNA</topic><topic>Coumaric acids</topic><topic>cultivated strawberries</topic><topic>dna microarrays</topic><topic>DNA, Complementary - isolation &amp; purification</topic><topic>Economic plant physiology</topic><topic>enzyme activity</topic><topic>enzyme kinetics</topic><topic>Enzymes</topic><topic>Esters</topic><topic>Esters - chemistry</topic><topic>Esters - metabolism</topic><topic>flavonoid 3-o-glucosyltransferase</topic><topic>Fragaria</topic><topic>Fragaria - enzymology</topic><topic>Fragaria - genetics</topic><topic>Fragaria - growth &amp; development</topic><topic>Fragaria ananassa</topic><topic>fragaria x ananassa</topic><topic>Fructification, ripening. Postharvest physiology</topic><topic>Fruit - enzymology</topic><topic>Fruit - genetics</topic><topic>Fruit - growth &amp; development</topic><topic>Fruits</topic><topic>fruits (plant anatomy)</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression regulation</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>glucosyltransferases</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Glucosyltransferases - physiology</topic><topic>glycosyltransferases</topic><topic>Growth and development</topic><topic>heterologous expression</topic><topic>hexosyltransferases</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Kinetics</topic><topic>Messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>molecular-cloning</topic><topic>o-glucosyltransferase</topic><topic>Oxidative Stress</topic><topic>pectate lyase</topic><topic>Phylogeny</topic><topic>plant biochemistry</topic><topic>plant genetics</topic><topic>plant physiology</topic><topic>plant proteins</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>recombinant fusion proteins</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Ripening</topic><topic>Sequence Alignment</topic><topic>strawberries</topic><topic>substrate-specificity</topic><topic>Transgenic plants</topic><topic>UDP-glucose:cinnamate glucosyltransferase</topic><topic>Uridine Diphosphate Glucose - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lunkenbein, Stefan</creatorcontrib><creatorcontrib>Bellido, MariLuz</creatorcontrib><creatorcontrib>Aharoni, Asaph</creatorcontrib><creatorcontrib>Salentijn, Elma M.J</creatorcontrib><creatorcontrib>Kaldenhoff, Ralf</creatorcontrib><creatorcontrib>Coiner, Heather A</creatorcontrib><creatorcontrib>Muñoz-Blanco, Juan</creatorcontrib><creatorcontrib>Schwab, Wilfried</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NARCIS:Publications</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lunkenbein, Stefan</au><au>Bellido, MariLuz</au><au>Aharoni, Asaph</au><au>Salentijn, Elma M.J</au><au>Kaldenhoff, Ralf</au><au>Coiner, Heather A</au><au>Muñoz-Blanco, Juan</au><au>Schwab, Wilfried</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>140</volume><issue>3</issue><spage>1047</spage><epage>1058</epage><pages>1047-1058</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Strawberry (Fragaria x ananassa) fruit accumulate (hydroxy)cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria x ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>16443693</pmid><doi>10.1104/pp.105.074955</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2006-03, Vol.140 (3), p.1047-1058
issn 0032-0889
1532-2548
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_347417
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Agronomy. Soil science and plant productions
Amino Acid Sequence
amino acid sequences
arabidopsis-thaliana
Auxins
Biochemical Processes and Macromolecular Structures
Biological and medical sciences
Cauliflower mosaic virus
Cell culture techniques
Cinnamates - chemistry
Cinnamates - metabolism
cinnamic acid
complementary DNA
Coumaric acids
cultivated strawberries
dna microarrays
DNA, Complementary - isolation & purification
Economic plant physiology
enzyme activity
enzyme kinetics
Enzymes
Esters
Esters - chemistry
Esters - metabolism
flavonoid 3-o-glucosyltransferase
Fragaria
Fragaria - enzymology
Fragaria - genetics
Fragaria - growth & development
Fragaria ananassa
fragaria x ananassa
Fructification, ripening. Postharvest physiology
Fruit - enzymology
Fruit - genetics
Fruit - growth & development
Fruits
fruits (plant anatomy)
Fundamental and applied biological sciences. Psychology
gene expression regulation
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
glucosyltransferases
Glucosyltransferases - genetics
Glucosyltransferases - metabolism
Glucosyltransferases - physiology
glycosyltransferases
Growth and development
heterologous expression
hexosyltransferases
Indoleacetic Acids - metabolism
Kinetics
Messenger RNA
Molecular Sequence Data
molecular-cloning
o-glucosyltransferase
Oxidative Stress
pectate lyase
Phylogeny
plant biochemistry
plant genetics
plant physiology
plant proteins
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Plants, Genetically Modified - metabolism
recombinant fusion proteins
Recombinant Fusion Proteins - metabolism
Ripening
Sequence Alignment
strawberries
substrate-specificity
Transgenic plants
UDP-glucose:cinnamate glucosyltransferase
Uridine Diphosphate Glucose - metabolism
title Cinnamate Metabolism in Ripening Fruit. Characterization of a UDP-Glucose:Cinnamate Glucosyltransferase from Strawberry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cinnamate%20Metabolism%20in%20Ripening%20Fruit.%20Characterization%20of%20a%20UDP-Glucose:Cinnamate%20Glucosyltransferase%20from%20Strawberry&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Lunkenbein,%20Stefan&rft.date=2006-03-01&rft.volume=140&rft.issue=3&rft.spage=1047&rft.epage=1058&rft.pages=1047-1058&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.105.074955&rft_dat=%3Cjstor_wagen%3E20205668%3C/jstor_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-29d76c6ad73916e60555ef808297c49d19fa223aaffd04e49cb343ab3ef704b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19838955&rft_id=info:pmid/16443693&rft_jstor_id=20205668&rfr_iscdi=true