Loading…

Expression of an engineered granule-bound Escherichia coli maltose acetyltransferase in wild-type and amf potato plants

Starch is used in many industrial applications, but often requires chemical derivatization to enhance its properties before use. In particular, the stability of starch polymers in solution is improved by acetylation. A drawback of this treatment is the use of pollutant chemicals. A biological altern...

Full description

Saved in:
Bibliographic Details
Published in:Plant biotechnology journal 2007, Vol.5 (1), p.134-145
Main Authors: Nazarian Firouzabadi, Farhad, Vincken, Jean-Paul, Ji, Qin, Suurs, Luc C.J.M, Visser, Richard G.F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Starch is used in many industrial applications, but often requires chemical derivatization to enhance its properties before use. In particular, the stability of starch polymers in solution is improved by acetylation. A drawback of this treatment is the use of pollutant chemicals. A biological alternative to chemical derivatization was investigated by the expression of an amyloplast-targeted Escherichia coli maltose acetyltransferase (MAT) gene in tubers of wild-type (Kardal) and mutant amylose-free (amf) potato plants. MAT was expressed as such, or fused to the N- or C-terminus of a non-catalytic starch-binding domain (SBD) to target the starch granule. Starch granules derived from transgenic plants were found to contain acetyl groups, although their content was low, opening up an avenue to move away from the post-harvest chemical derivatization of starch. MAT inside starch granules was found to be active post-harvest when supplied with acetyl-coenzyme A and glucose or maltose, but it did not acetylate starch polymers in vitro. Starch granules from transformants in which MAT alone was expressed also showed MAT activity, indicating that MAT is accumulated in starch granules, and has affinity for starch by itself. Furthermore, starch granule morphology was altered, and fusion proteins containing MAT and SBD seemed to have a higher affinity for starch granules than two appended SBDs. These results are discussed against the background of the quaternary structure of MAT.
ISSN:1467-7644
1467-7652
DOI:10.1111/j.1467-7652.2006.00227.x