Loading…

Potential pressure indicators for fishing, and their data requirements

Piet, G. J., Quirijns, F. J., Robinson, L., and Greenstreet, S. P. R. 2007. Potential pressure indicators for fishing, and their data requirements. – ICES Journal of Marine Science, 64: 110–121. Indicators of fishing pressure are necessary to support an ecosystem approach to fisheries management (EA...

Full description

Saved in:
Bibliographic Details
Published in:ICES journal of marine science 2007, Vol.64 (1), p.110-121
Main Authors: Piet, G.J, Quirijns, F.J, Robinson, L, Greenstreet, S.P.R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Piet, G. J., Quirijns, F. J., Robinson, L., and Greenstreet, S. P. R. 2007. Potential pressure indicators for fishing, and their data requirements. – ICES Journal of Marine Science, 64: 110–121. Indicators of fishing pressure are necessary to support an ecosystem approach to fisheries management (EAFM). We present a framework that distinguishes four levels of pressure indicators that move from being a simple description of anthropogenic activity to more precisely describing the actual pressure on the ecosystem and its components, but which require increasingly more information to be quantified. We use the example of the Dutch beam trawl fleet in the North Sea to compare these pressure indicators, as the level of information used is increased. The first level is that of fleet capacity (e.g. number of vessels), the second is fishing effort, usually expressed as the number of hours fishing or days at sea, the third incorporates fishing parameters such as the proportion of time actually spent fishing, fishing speed, or gear characteristics, e.g. the size of the beam trawl in order to determine the frequency with which an area is fished, and at the fourth level, the most informative measure of fishing pressure, annual fishing mortality, is available for a few commercial species from stock assessments. For other species, it can be calculated from the lower level pressure indicators through the incorporation of the chance of individuals of a species coming into contact with the fishing gear and the encounter mortality, which is the portion of mortality caused by the passing of the gear. Comparison of trends and absolute values shows that the pressure indicators at different levels differ considerably in their description of both present and historical fishing impact in the North Sea. Therefore, for an EAFM, we advise using the highest level pressure indicator that can be obtained with the data available.
ISSN:1054-3139
1095-9289
DOI:10.1093/icesjms/fsl006