Loading…

Dynamic Modeling of Sludge Compaction and Consolidation Processes in Wastewater Secondary Settling Tanks

The double exponential settling model is the widely accepted model for wastewater secondary settling tanks. However, this model does not estimate accurately solids concentrations in the settler underflow stream, mainly because sludge compression and consolidation processes are not considered. In act...

Full description

Saved in:
Bibliographic Details
Published in:Water environment research 2009-01, Vol.81 (1), p.51-56
Main Authors: Abusam, A., Keesman, K. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The double exponential settling model is the widely accepted model for wastewater secondary settling tanks. However, this model does not estimate accurately solids concentrations in the settler underflow stream, mainly because sludge compression and consolidation processes are not considered. In activated sludge systems, accurate estimation of the solids in the underflow stream will facilitate the calibration process and can lead to correct estimates of particularly kinetic parameters related to biomass growth. Using principles of compaction and consolidation, as in soil mechanics, a dynamic model of the sludge consolidation processes taking place in the secondary settling tanks is developed and incorporated to the commonly used double exponential settling model. The modified double exponential model is calibrated and validated using data obtained from a full-scale wastewater treatment plant. Good agreement between predicted and measured data confirmed the validity of the modified model.
ISSN:1061-4303
1554-7531
DOI:10.1002/j.1554-7531.2009.tb00249.x