Loading…

Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol

It has been investigated whether secoisolariciresinol (SECO) and anhydrosecoisolariciresinol (AHS), an acid degradation product of SECO, could be fermented in a similar way, and to a similar extent, by members of the intestinal microbiota. AHS and SECO were demethylated by Peptostreptococcus product...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied microbiology 2009-07, Vol.107 (1), p.308-317
Main Authors: Struijs, K, Vincken, J.-P, Gruppen, H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5049-6215ba69df6cb9ca2ba88ed7b474e088c982f5fe5de3674c762363ead223aec23
cites cdi_FETCH-LOGICAL-c5049-6215ba69df6cb9ca2ba88ed7b474e088c982f5fe5de3674c762363ead223aec23
container_end_page 317
container_issue 1
container_start_page 308
container_title Journal of applied microbiology
container_volume 107
creator Struijs, K
Vincken, J.-P
Gruppen, H
description It has been investigated whether secoisolariciresinol (SECO) and anhydrosecoisolariciresinol (AHS), an acid degradation product of SECO, could be fermented in a similar way, and to a similar extent, by members of the intestinal microbiota. AHS and SECO were demethylated by Peptostreptococcus productus, Eubacterium limosum and Clostridium methoxybenzovorans. These bacteria have been identified as members of the human intestinal flora or closely related species. Demethylated AHS and demethylated SECO were purified by preparative RP-HPLC, and subsequently subjected to fermentation with Eggerthella lenta, Clostridium scindens and Clostridium hiranonis. Eggerthella lenta efficiently dehydroxylated demethylated SECO to enterodiol, whereas the other bacteria showed no dehydroxylation activity. The conversion of the diol structure of SECO into the furan ring in AHS did not influence the demethylation capability of the tested bacteria. The results also showed that the extent of dehydroxylation of demethylated AHS was much lower than that of demethylated SECO. Plant lignans are converted into bioactive mammalian lignans by the human intestinal bacteria. This study showed that the modification of plant lignans resulted in the formation a new type of mammalian lignan.
doi_str_mv 10.1111/j.1365-2672.2009.04209.x
format article
fullrecord <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_380495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733314265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5049-6215ba69df6cb9ca2ba88ed7b474e088c982f5fe5de3674c762363ead223aec23</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCIlsJfgFyAUxZ_xI6DxKFUtIAWcYCeRxPHKV557cVuaPffY3cDXBDCkmdGmvdmxvNcVTUlK5rPq82KcikaJju2YoT0K9KybG_vVce_E_fv4rYRpGNH1aOUNoRQToR8WB3RnhPGKT2u1m9RX5to0dU6-B8mJht8HaY6GR1sCg6j1TaaZH1wNfox32_7MYa_5R9XDyZ0yTxZ_El1ef7u69n7Zv354sPZ6brRgrR9IxkVA8p-nKQeeo1sQKXM2A1t1xqilO4Vm8RkxGi47FrdScYlNzgyxtFoxk-q14e6N3hlvPXZgMeobYKAFpwdIsY93MwRvCtuNw8JuMrNRSa_PJB3MXyfTbqGrU3aOIfehDlBxzmnLZMF-eKfSEZUJwnhGagOQJ33kqKZYBfttoxACRTBYANFFyi6QBEM7gSD20x9uvSYh60Z_xAXhTLg-QLApNFNEX155y9cXqXqpSjDvll2Yp3Z__cA8PH0U4ky_9mBP2EAvIq5x-UXVn4MlVwJTvhP9fC9LQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20876003</pqid></control><display><type>article</type><title>Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol</title><source>Alma/SFX Local Collection</source><creator>Struijs, K ; Vincken, J.-P ; Gruppen, H</creator><creatorcontrib>Struijs, K ; Vincken, J.-P ; Gruppen, H</creatorcontrib><description>It has been investigated whether secoisolariciresinol (SECO) and anhydrosecoisolariciresinol (AHS), an acid degradation product of SECO, could be fermented in a similar way, and to a similar extent, by members of the intestinal microbiota. AHS and SECO were demethylated by Peptostreptococcus productus, Eubacterium limosum and Clostridium methoxybenzovorans. These bacteria have been identified as members of the human intestinal flora or closely related species. Demethylated AHS and demethylated SECO were purified by preparative RP-HPLC, and subsequently subjected to fermentation with Eggerthella lenta, Clostridium scindens and Clostridium hiranonis. Eggerthella lenta efficiently dehydroxylated demethylated SECO to enterodiol, whereas the other bacteria showed no dehydroxylation activity. The conversion of the diol structure of SECO into the furan ring in AHS did not influence the demethylation capability of the tested bacteria. The results also showed that the extent of dehydroxylation of demethylated AHS was much lower than that of demethylated SECO. Plant lignans are converted into bioactive mammalian lignans by the human intestinal bacteria. This study showed that the modification of plant lignans resulted in the formation a new type of mammalian lignan.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/j.1365-2672.2009.04209.x</identifier><identifier>PMID: 19302311</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>anhydrosecoisolariciresinol ; Bacteria ; Biological and medical sciences ; Butylene Glycols - chemistry ; Butylene Glycols - metabolism ; Chromatography, High Pressure Liquid ; Clostridium ; Clostridium - metabolism ; dehydroxylation ; demethylation ; diglucoside ; Eggerthella lenta ; enterodiol ; enterolactone ; Eubacterium - metabolism ; Eubacterium limosum ; Fermentation ; flaxseed ; Fundamental and applied biological sciences. Psychology ; gen. nov ; glycosides ; human intestinal bacteria ; lignan ; lignans ; Lignans - chemistry ; Lignans - metabolism ; linseed ; liquid-chromatography ; Mass Spectrometry ; metabolism ; Microbiology ; Peptostreptococcus ; Peptostreptococcus - metabolism ; quantification ; secoisolariciresinol ; Time Factors</subject><ispartof>Journal of applied microbiology, 2009-07, Vol.107 (1), p.308-317</ispartof><rights>2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology</rights><rights>2009 INIST-CNRS</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5049-6215ba69df6cb9ca2ba88ed7b474e088c982f5fe5de3674c762363ead223aec23</citedby><cites>FETCH-LOGICAL-c5049-6215ba69df6cb9ca2ba88ed7b474e088c982f5fe5de3674c762363ead223aec23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21589655$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19302311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Struijs, K</creatorcontrib><creatorcontrib>Vincken, J.-P</creatorcontrib><creatorcontrib>Gruppen, H</creatorcontrib><title>Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>It has been investigated whether secoisolariciresinol (SECO) and anhydrosecoisolariciresinol (AHS), an acid degradation product of SECO, could be fermented in a similar way, and to a similar extent, by members of the intestinal microbiota. AHS and SECO were demethylated by Peptostreptococcus productus, Eubacterium limosum and Clostridium methoxybenzovorans. These bacteria have been identified as members of the human intestinal flora or closely related species. Demethylated AHS and demethylated SECO were purified by preparative RP-HPLC, and subsequently subjected to fermentation with Eggerthella lenta, Clostridium scindens and Clostridium hiranonis. Eggerthella lenta efficiently dehydroxylated demethylated SECO to enterodiol, whereas the other bacteria showed no dehydroxylation activity. The conversion of the diol structure of SECO into the furan ring in AHS did not influence the demethylation capability of the tested bacteria. The results also showed that the extent of dehydroxylation of demethylated AHS was much lower than that of demethylated SECO. Plant lignans are converted into bioactive mammalian lignans by the human intestinal bacteria. This study showed that the modification of plant lignans resulted in the formation a new type of mammalian lignan.</description><subject>anhydrosecoisolariciresinol</subject><subject>Bacteria</subject><subject>Biological and medical sciences</subject><subject>Butylene Glycols - chemistry</subject><subject>Butylene Glycols - metabolism</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Clostridium</subject><subject>Clostridium - metabolism</subject><subject>dehydroxylation</subject><subject>demethylation</subject><subject>diglucoside</subject><subject>Eggerthella lenta</subject><subject>enterodiol</subject><subject>enterolactone</subject><subject>Eubacterium - metabolism</subject><subject>Eubacterium limosum</subject><subject>Fermentation</subject><subject>flaxseed</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gen. nov</subject><subject>glycosides</subject><subject>human intestinal bacteria</subject><subject>lignan</subject><subject>lignans</subject><subject>Lignans - chemistry</subject><subject>Lignans - metabolism</subject><subject>linseed</subject><subject>liquid-chromatography</subject><subject>Mass Spectrometry</subject><subject>metabolism</subject><subject>Microbiology</subject><subject>Peptostreptococcus</subject><subject>Peptostreptococcus - metabolism</subject><subject>quantification</subject><subject>secoisolariciresinol</subject><subject>Time Factors</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNUk1v1DAQjRCIlsJfgFyAUxZ_xI6DxKFUtIAWcYCeRxPHKV557cVuaPffY3cDXBDCkmdGmvdmxvNcVTUlK5rPq82KcikaJju2YoT0K9KybG_vVce_E_fv4rYRpGNH1aOUNoRQToR8WB3RnhPGKT2u1m9RX5to0dU6-B8mJht8HaY6GR1sCg6j1TaaZH1wNfox32_7MYa_5R9XDyZ0yTxZ_El1ef7u69n7Zv354sPZ6brRgrR9IxkVA8p-nKQeeo1sQKXM2A1t1xqilO4Vm8RkxGi47FrdScYlNzgyxtFoxk-q14e6N3hlvPXZgMeobYKAFpwdIsY93MwRvCtuNw8JuMrNRSa_PJB3MXyfTbqGrU3aOIfehDlBxzmnLZMF-eKfSEZUJwnhGagOQJ33kqKZYBfttoxACRTBYANFFyi6QBEM7gSD20x9uvSYh60Z_xAXhTLg-QLApNFNEX155y9cXqXqpSjDvll2Yp3Z__cA8PH0U4ky_9mBP2EAvIq5x-UXVn4MlVwJTvhP9fC9LQ</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Struijs, K</creator><creator>Vincken, J.-P</creator><creator>Gruppen, H</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>QVL</scope></search><sort><creationdate>200907</creationdate><title>Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol</title><author>Struijs, K ; Vincken, J.-P ; Gruppen, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5049-6215ba69df6cb9ca2ba88ed7b474e088c982f5fe5de3674c762363ead223aec23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>anhydrosecoisolariciresinol</topic><topic>Bacteria</topic><topic>Biological and medical sciences</topic><topic>Butylene Glycols - chemistry</topic><topic>Butylene Glycols - metabolism</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Clostridium</topic><topic>Clostridium - metabolism</topic><topic>dehydroxylation</topic><topic>demethylation</topic><topic>diglucoside</topic><topic>Eggerthella lenta</topic><topic>enterodiol</topic><topic>enterolactone</topic><topic>Eubacterium - metabolism</topic><topic>Eubacterium limosum</topic><topic>Fermentation</topic><topic>flaxseed</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gen. nov</topic><topic>glycosides</topic><topic>human intestinal bacteria</topic><topic>lignan</topic><topic>lignans</topic><topic>Lignans - chemistry</topic><topic>Lignans - metabolism</topic><topic>linseed</topic><topic>liquid-chromatography</topic><topic>Mass Spectrometry</topic><topic>metabolism</topic><topic>Microbiology</topic><topic>Peptostreptococcus</topic><topic>Peptostreptococcus - metabolism</topic><topic>quantification</topic><topic>secoisolariciresinol</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Struijs, K</creatorcontrib><creatorcontrib>Vincken, J.-P</creatorcontrib><creatorcontrib>Gruppen, H</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NARCIS:Publications</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Struijs, K</au><au>Vincken, J.-P</au><au>Gruppen, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2009-07</date><risdate>2009</risdate><volume>107</volume><issue>1</issue><spage>308</spage><epage>317</epage><pages>308-317</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>It has been investigated whether secoisolariciresinol (SECO) and anhydrosecoisolariciresinol (AHS), an acid degradation product of SECO, could be fermented in a similar way, and to a similar extent, by members of the intestinal microbiota. AHS and SECO were demethylated by Peptostreptococcus productus, Eubacterium limosum and Clostridium methoxybenzovorans. These bacteria have been identified as members of the human intestinal flora or closely related species. Demethylated AHS and demethylated SECO were purified by preparative RP-HPLC, and subsequently subjected to fermentation with Eggerthella lenta, Clostridium scindens and Clostridium hiranonis. Eggerthella lenta efficiently dehydroxylated demethylated SECO to enterodiol, whereas the other bacteria showed no dehydroxylation activity. The conversion of the diol structure of SECO into the furan ring in AHS did not influence the demethylation capability of the tested bacteria. The results also showed that the extent of dehydroxylation of demethylated AHS was much lower than that of demethylated SECO. Plant lignans are converted into bioactive mammalian lignans by the human intestinal bacteria. This study showed that the modification of plant lignans resulted in the formation a new type of mammalian lignan.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>19302311</pmid><doi>10.1111/j.1365-2672.2009.04209.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2009-07, Vol.107 (1), p.308-317
issn 1364-5072
1365-2672
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_380495
source Alma/SFX Local Collection
subjects anhydrosecoisolariciresinol
Bacteria
Biological and medical sciences
Butylene Glycols - chemistry
Butylene Glycols - metabolism
Chromatography, High Pressure Liquid
Clostridium
Clostridium - metabolism
dehydroxylation
demethylation
diglucoside
Eggerthella lenta
enterodiol
enterolactone
Eubacterium - metabolism
Eubacterium limosum
Fermentation
flaxseed
Fundamental and applied biological sciences. Psychology
gen. nov
glycosides
human intestinal bacteria
lignan
lignans
Lignans - chemistry
Lignans - metabolism
linseed
liquid-chromatography
Mass Spectrometry
metabolism
Microbiology
Peptostreptococcus
Peptostreptococcus - metabolism
quantification
secoisolariciresinol
Time Factors
title Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20conversion%20of%20secoisolariciresinol%20and%20anhydrosecoisolariciresinol&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Struijs,%20K&rft.date=2009-07&rft.volume=107&rft.issue=1&rft.spage=308&rft.epage=317&rft.pages=308-317&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/j.1365-2672.2009.04209.x&rft_dat=%3Cproquest_wagen%3E733314265%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5049-6215ba69df6cb9ca2ba88ed7b474e088c982f5fe5de3674c762363ead223aec23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20876003&rft_id=info:pmid/19302311&rfr_iscdi=true