Loading…

Modelling the direct impact of bottom trawling on the North Sea fish community to derive estimates of fishing mortality for non-target fish species

Piet, G. J., van Hal, R., and Greenstreet, S. P. R. 2009. Modelling the direct impact of bottom trawling on the North Sea fish community to derive estimates of fishing mortality for non-target fish species. – ICES Journal of Marine Science, 66: 1985–1998. This study introduces a spatially explicit m...

Full description

Saved in:
Bibliographic Details
Published in:ICES journal of marine science 2009-10, Vol.66 (9), p.1985-1998
Main Authors: Piet, G. J., van Hal, R., Greenstreet, S. P. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Piet, G. J., van Hal, R., and Greenstreet, S. P. R. 2009. Modelling the direct impact of bottom trawling on the North Sea fish community to derive estimates of fishing mortality for non-target fish species. – ICES Journal of Marine Science, 66: 1985–1998. This study introduces a spatially explicit model that combines abundance data for all the main fish species in the demersal North Sea fish community with international effort data and estimates of gear-, species-, and size-dependent catch efficiency to determine the mortality of non-target fish species caused by bottom trawl fisheries and its spatial variation. Where necessary information was lacking, assumptions were made, and a sensitivity analysis performed to examine the impact of these issues on model results. Model outcomes were validated using international landings and discard data for five target species: cod, haddock, whiting, sole, and plaice. This showed that depending on its configuration, the model could reproduce recorded landings and discards of these species reasonably well. This suggests that the model could be used to simulate rates of fishing mortality for non-target fish species, for which few data are currently available. Sensitivity analyses revealed that model outcomes were most strongly influenced by the estimates of gear catch efficiency and the extent to which the distributions of fishing effort and each species overlapped. Better data for these processes would enhance the contribution that this type of model could make in supporting an ecosystem approach to fisheries management.
ISSN:1054-3139
1095-9289
DOI:10.1093/icesjms/fsp162