Loading…

Population dynamics models based on cumulative density dependent feedback: A link to the logistic growth curve and a test for symmetry using aphid data

Density dependent feedback, based on cumulative population size, has been advocated to explain and mathematically characterize “boom and bust” population dynamics. Such feedback results in a bell-shaped population trajectory of the population density. Here, we note that this trajectory is mathematic...

Full description

Saved in:
Bibliographic Details
Published in:Ecological modelling 2009-08, Vol.220 (15), p.1745-1751
Main Authors: Matis, James H., Kiffe, Thomas R., van der Werf, Wopke, Costamagna, Alejandro C., Matis, Timothy I., Grant, William E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-2b9534a7e835868c604a4b183d60d7ebe3adf9f3f4ef68e7786f88d19a7685853
cites cdi_FETCH-LOGICAL-c490t-2b9534a7e835868c604a4b183d60d7ebe3adf9f3f4ef68e7786f88d19a7685853
container_end_page 1751
container_issue 15
container_start_page 1745
container_title Ecological modelling
container_volume 220
creator Matis, James H.
Kiffe, Thomas R.
van der Werf, Wopke
Costamagna, Alejandro C.
Matis, Timothy I.
Grant, William E.
description Density dependent feedback, based on cumulative population size, has been advocated to explain and mathematically characterize “boom and bust” population dynamics. Such feedback results in a bell-shaped population trajectory of the population density. Here, we note that this trajectory is mathematically described by the logistic probability density function. Consequently, the cumulative population follows a time trajectory that has the same shape as the cumulative logistic function. Thus, the Pearl–Verhulst logistic equation, widely used as a phenomenological model for density dependent population growth, can be interpreted as a model for cumulative rather than instantaneous population. We extend the cumulative density dependent differential equation model to allow skew in the bell-shaped population trajectory and present a simple statistical test for skewness. Model properties are exemplified by fitting population trajectories of the soybean aphid, Aphis glycines. The linkage between the mechanistic underpinnings of the logistic probability density function and cumulative distribution function models could open up new avenues for analyzing population data.
doi_str_mv 10.1016/j.ecolmodel.2009.04.026
format article
fullrecord <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_385154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030438000900283X</els_id><sourcerecordid>20623049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-2b9534a7e835868c604a4b183d60d7ebe3adf9f3f4ef68e7786f88d19a7685853</originalsourceid><addsrcrecordid>eNqFksFu1DAQhiMEEkvhGfAFOO1ix47j9LaqCq1UCQ5wthx7suutYwfb6WqfhNfF6RaO9DS2_P0z_8h_Vb0neEMw4Z8PG9DBjcGA29QYdxvMNrjmL6oVEW29bsv5ZbXCFLM1FRi_rt6kdMAYk1rUq-r39zDNTmUbPDInr0arE3psllCvEhhUHvQ8PjIPgAz4ZPOp1Al8uWQ0AJhe6ftLtEXO-nuUA8p7QC7sbMpWo10Mx7wvTWLRK2-QQhlSEYaI0mkcIccTmpP1O6SmvTXIqKzeVq8G5RK8e6oX1c8v1z-ubtZ3377eXm3v1pp1OK_rvmsoUy0I2gguNMdMsZ4Iajg2LfRAlRm6gQ4MBi6gbQUfhDCkUy0XjWjoRXV57ntUO_DFA3jpVdQ2yaCsdLaPKp7kcY7Su6VMc58kFQ1pWBF_OounGH7NZSc52qTBOeUhzEl2mHLa1l1byI__JSljlDeEPwvWmNflK7sCtmdQx5BShEFO0Y6LV4LlEgx5kP-CIZdgSMxkCUNRfngaoZJWbojKL-v-ldeEsxrTxfP2zJUswIOFKJO24DUYG0FnaYJ9dtYfXizWxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20623049</pqid></control><display><type>article</type><title>Population dynamics models based on cumulative density dependent feedback: A link to the logistic growth curve and a test for symmetry using aphid data</title><source>Elsevier</source><creator>Matis, James H. ; Kiffe, Thomas R. ; van der Werf, Wopke ; Costamagna, Alejandro C. ; Matis, Timothy I. ; Grant, William E.</creator><creatorcontrib>Matis, James H. ; Kiffe, Thomas R. ; van der Werf, Wopke ; Costamagna, Alejandro C. ; Matis, Timothy I. ; Grant, William E.</creatorcontrib><description>Density dependent feedback, based on cumulative population size, has been advocated to explain and mathematically characterize “boom and bust” population dynamics. Such feedback results in a bell-shaped population trajectory of the population density. Here, we note that this trajectory is mathematically described by the logistic probability density function. Consequently, the cumulative population follows a time trajectory that has the same shape as the cumulative logistic function. Thus, the Pearl–Verhulst logistic equation, widely used as a phenomenological model for density dependent population growth, can be interpreted as a model for cumulative rather than instantaneous population. We extend the cumulative density dependent differential equation model to allow skew in the bell-shaped population trajectory and present a simple statistical test for skewness. Model properties are exemplified by fitting population trajectories of the soybean aphid, Aphis glycines. The linkage between the mechanistic underpinnings of the logistic probability density function and cumulative distribution function models could open up new avenues for analyzing population data.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/j.ecolmodel.2009.04.026</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Aphididae ; Aphis ; Biological and medical sciences ; Cumulative size dependency ; Demecology ; Density dependent feedback ; fluctuations ; Fundamental and applied biological sciences. Psychology ; General aspects ; General aspects. Techniques ; Glycine max ; Logistic growth model ; Logistic probability density ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Minimal mechanistic model ; Population eruption and decline ; Population growth laws ; size ; Skew</subject><ispartof>Ecological modelling, 2009-08, Vol.220 (15), p.1745-1751</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-2b9534a7e835868c604a4b183d60d7ebe3adf9f3f4ef68e7786f88d19a7685853</citedby><cites>FETCH-LOGICAL-c490t-2b9534a7e835868c604a4b183d60d7ebe3adf9f3f4ef68e7786f88d19a7685853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21642037$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Matis, James H.</creatorcontrib><creatorcontrib>Kiffe, Thomas R.</creatorcontrib><creatorcontrib>van der Werf, Wopke</creatorcontrib><creatorcontrib>Costamagna, Alejandro C.</creatorcontrib><creatorcontrib>Matis, Timothy I.</creatorcontrib><creatorcontrib>Grant, William E.</creatorcontrib><title>Population dynamics models based on cumulative density dependent feedback: A link to the logistic growth curve and a test for symmetry using aphid data</title><title>Ecological modelling</title><description>Density dependent feedback, based on cumulative population size, has been advocated to explain and mathematically characterize “boom and bust” population dynamics. Such feedback results in a bell-shaped population trajectory of the population density. Here, we note that this trajectory is mathematically described by the logistic probability density function. Consequently, the cumulative population follows a time trajectory that has the same shape as the cumulative logistic function. Thus, the Pearl–Verhulst logistic equation, widely used as a phenomenological model for density dependent population growth, can be interpreted as a model for cumulative rather than instantaneous population. We extend the cumulative density dependent differential equation model to allow skew in the bell-shaped population trajectory and present a simple statistical test for skewness. Model properties are exemplified by fitting population trajectories of the soybean aphid, Aphis glycines. The linkage between the mechanistic underpinnings of the logistic probability density function and cumulative distribution function models could open up new avenues for analyzing population data.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Aphididae</subject><subject>Aphis</subject><subject>Biological and medical sciences</subject><subject>Cumulative size dependency</subject><subject>Demecology</subject><subject>Density dependent feedback</subject><subject>fluctuations</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General aspects. Techniques</subject><subject>Glycine max</subject><subject>Logistic growth model</subject><subject>Logistic probability density</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Minimal mechanistic model</subject><subject>Population eruption and decline</subject><subject>Population growth laws</subject><subject>size</subject><subject>Skew</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFksFu1DAQhiMEEkvhGfAFOO1ix47j9LaqCq1UCQ5wthx7suutYwfb6WqfhNfF6RaO9DS2_P0z_8h_Vb0neEMw4Z8PG9DBjcGA29QYdxvMNrjmL6oVEW29bsv5ZbXCFLM1FRi_rt6kdMAYk1rUq-r39zDNTmUbPDInr0arE3psllCvEhhUHvQ8PjIPgAz4ZPOp1Al8uWQ0AJhe6ftLtEXO-nuUA8p7QC7sbMpWo10Mx7wvTWLRK2-QQhlSEYaI0mkcIccTmpP1O6SmvTXIqKzeVq8G5RK8e6oX1c8v1z-ubtZ3377eXm3v1pp1OK_rvmsoUy0I2gguNMdMsZ4Iajg2LfRAlRm6gQ4MBi6gbQUfhDCkUy0XjWjoRXV57ntUO_DFA3jpVdQ2yaCsdLaPKp7kcY7Su6VMc58kFQ1pWBF_OounGH7NZSc52qTBOeUhzEl2mHLa1l1byI__JSljlDeEPwvWmNflK7sCtmdQx5BShEFO0Y6LV4LlEgx5kP-CIZdgSMxkCUNRfngaoZJWbojKL-v-ldeEsxrTxfP2zJUswIOFKJO24DUYG0FnaYJ9dtYfXizWxw</recordid><startdate>20090810</startdate><enddate>20090810</enddate><creator>Matis, James H.</creator><creator>Kiffe, Thomas R.</creator><creator>van der Werf, Wopke</creator><creator>Costamagna, Alejandro C.</creator><creator>Matis, Timothy I.</creator><creator>Grant, William E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>QVL</scope></search><sort><creationdate>20090810</creationdate><title>Population dynamics models based on cumulative density dependent feedback: A link to the logistic growth curve and a test for symmetry using aphid data</title><author>Matis, James H. ; Kiffe, Thomas R. ; van der Werf, Wopke ; Costamagna, Alejandro C. ; Matis, Timothy I. ; Grant, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-2b9534a7e835868c604a4b183d60d7ebe3adf9f3f4ef68e7786f88d19a7685853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Aphididae</topic><topic>Aphis</topic><topic>Biological and medical sciences</topic><topic>Cumulative size dependency</topic><topic>Demecology</topic><topic>Density dependent feedback</topic><topic>fluctuations</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General aspects. Techniques</topic><topic>Glycine max</topic><topic>Logistic growth model</topic><topic>Logistic probability density</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Minimal mechanistic model</topic><topic>Population eruption and decline</topic><topic>Population growth laws</topic><topic>size</topic><topic>Skew</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matis, James H.</creatorcontrib><creatorcontrib>Kiffe, Thomas R.</creatorcontrib><creatorcontrib>van der Werf, Wopke</creatorcontrib><creatorcontrib>Costamagna, Alejandro C.</creatorcontrib><creatorcontrib>Matis, Timothy I.</creatorcontrib><creatorcontrib>Grant, William E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>NARCIS:Publications</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matis, James H.</au><au>Kiffe, Thomas R.</au><au>van der Werf, Wopke</au><au>Costamagna, Alejandro C.</au><au>Matis, Timothy I.</au><au>Grant, William E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population dynamics models based on cumulative density dependent feedback: A link to the logistic growth curve and a test for symmetry using aphid data</atitle><jtitle>Ecological modelling</jtitle><date>2009-08-10</date><risdate>2009</risdate><volume>220</volume><issue>15</issue><spage>1745</spage><epage>1751</epage><pages>1745-1751</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>Density dependent feedback, based on cumulative population size, has been advocated to explain and mathematically characterize “boom and bust” population dynamics. Such feedback results in a bell-shaped population trajectory of the population density. Here, we note that this trajectory is mathematically described by the logistic probability density function. Consequently, the cumulative population follows a time trajectory that has the same shape as the cumulative logistic function. Thus, the Pearl–Verhulst logistic equation, widely used as a phenomenological model for density dependent population growth, can be interpreted as a model for cumulative rather than instantaneous population. We extend the cumulative density dependent differential equation model to allow skew in the bell-shaped population trajectory and present a simple statistical test for skewness. Model properties are exemplified by fitting population trajectories of the soybean aphid, Aphis glycines. The linkage between the mechanistic underpinnings of the logistic probability density function and cumulative distribution function models could open up new avenues for analyzing population data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecolmodel.2009.04.026</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3800
ispartof Ecological modelling, 2009-08, Vol.220 (15), p.1745-1751
issn 0304-3800
1872-7026
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_385154
source Elsevier
subjects Animal and plant ecology
Animal, plant and microbial ecology
Aphididae
Aphis
Biological and medical sciences
Cumulative size dependency
Demecology
Density dependent feedback
fluctuations
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
Glycine max
Logistic growth model
Logistic probability density
Methods and techniques (sampling, tagging, trapping, modelling...)
Minimal mechanistic model
Population eruption and decline
Population growth laws
size
Skew
title Population dynamics models based on cumulative density dependent feedback: A link to the logistic growth curve and a test for symmetry using aphid data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20dynamics%20models%20based%20on%20cumulative%20density%20dependent%20feedback:%20A%20link%20to%20the%20logistic%20growth%20curve%20and%20a%20test%20for%20symmetry%20using%20aphid%20data&rft.jtitle=Ecological%20modelling&rft.au=Matis,%20James%20H.&rft.date=2009-08-10&rft.volume=220&rft.issue=15&rft.spage=1745&rft.epage=1751&rft.pages=1745-1751&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/j.ecolmodel.2009.04.026&rft_dat=%3Cproquest_wagen%3E20623049%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-2b9534a7e835868c604a4b183d60d7ebe3adf9f3f4ef68e7786f88d19a7685853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20623049&rft_id=info:pmid/&rfr_iscdi=true