Loading…

Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks

According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related st...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2009-07, Vol.97 (2), p.490-499
Main Authors: Golovina, Elena A., Golovin, Andrey V., Hoekstra, Folkert A., Faller, Roland
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23
cites cdi_FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23
container_end_page 499
container_issue 2
container_start_page 490
container_title Biophysical journal
container_volume 97
creator Golovina, Elena A.
Golovin, Andrey V.
Hoekstra, Folkert A.
Faller, Roland
description According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related structural properties of dehydrated bilayers in atomic detail. The starting conformation of a palmitoyloleolylphosphatidylcholine lipid bilayer in excess water was been obtained by self-assembly. A series of molecular-dynamics simulations of palmitoyloleolylphosphatidylcholine with different degrees of dehydration (28.5, 11.7, and 5.4 waters per lipid) and different molar trehalose/lipid ratios (1:1) were carried out in the NPT ensemble. Water removal causes the formation of multilamellar “stacks” through periodic boundary conditions. The headgroups reorient from pointing outward to inward with dehydration. This causes changes in the electrostatic interactions between interfaces, resulting in interface interpenetration. Interpenetration creates self-spacing of the bilayers and prevents gel-phase formation. At lower concentrations, trehalose does not separate the interfaces, and acting together with self-spacing, it causes a considerable increase of APL. APL decreases at higher trehalose concentrations when the layer of sugar physically separates the interfaces. When interfaces are separated, the model confirms the water replacement hypothesis.
doi_str_mv 10.1016/j.bpj.2009.05.007
format article
fullrecord <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_387434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349509009576</els_id><sourcerecordid>787282994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEokvhAbigiAOcEsZO7CRUQiqFUqRKSBTE0XKcya6XxA6202pvPARPyJPgaFf8O_Rkaeb3fTO2vyR5TCAnQPiLbd5O25wCNDmwHKC6k6wIK2kGUPO7yQoAeFaUDTtKHni_BSCUAbmfHJGGk6bkxSoxX2RAl37EaZAKRzQhvdhNNmzQa59qk54GO2qVvsEg9fDz-49zqYJ1fimgG7XRZp1GOr0KblZhdpjaPjY3u85F5y59rQe5ixOuglRf_cPkXi8Hj48O53Hy-fztp7OL7PLDu_dnp5eZ4pSFTGJBCwpl0zHkbUf7lpBSVUixUhQ4Kdu-pgjQY4sFY6C6vmxqwlmsdlLS4jh5ufe9kWtcdkQjjHRKe2GlFoNunXQ7cTM7YYblmObWi6KuyqKM4ld7cSyO2Kn4KE4OYnJ6XESLwb8dozdiba8FrQgpSBMNnh8MnP02ow9i1F7hMEiDdvaiqita06ZZRj27leQVA8pIHcGn_4FbOzsT31BQwnhTcUYiRPaQctZ7h_3vnQmIJTFiK2JixJIYAUzExETNk78v-0dxiEgETvYAxv-61uiEVxqNwk47VEF0Vt9i_wteIdXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215697651</pqid></control><display><type>article</type><title>Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks</title><source>PubMed Central</source><creator>Golovina, Elena A. ; Golovin, Andrey V. ; Hoekstra, Folkert A. ; Faller, Roland</creator><creatorcontrib>Golovina, Elena A. ; Golovin, Andrey V. ; Hoekstra, Folkert A. ; Faller, Roland</creatorcontrib><description>According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related structural properties of dehydrated bilayers in atomic detail. The starting conformation of a palmitoyloleolylphosphatidylcholine lipid bilayer in excess water was been obtained by self-assembly. A series of molecular-dynamics simulations of palmitoyloleolylphosphatidylcholine with different degrees of dehydration (28.5, 11.7, and 5.4 waters per lipid) and different molar trehalose/lipid ratios (&lt;1:1, 1:1, and &gt;1:1) were carried out in the NPT ensemble. Water removal causes the formation of multilamellar “stacks” through periodic boundary conditions. The headgroups reorient from pointing outward to inward with dehydration. This causes changes in the electrostatic interactions between interfaces, resulting in interface interpenetration. Interpenetration creates self-spacing of the bilayers and prevents gel-phase formation. At lower concentrations, trehalose does not separate the interfaces, and acting together with self-spacing, it causes a considerable increase of APL. APL decreases at higher trehalose concentrations when the layer of sugar physically separates the interfaces. When interfaces are separated, the model confirms the water replacement hypothesis.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2009.05.007</identifier><identifier>PMID: 19619463</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>APL (programming language) ; Atomic structure ; Dehydration ; full hydration ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; lipid-bilayers ; Lipids ; Membrane ; Membranes ; Models, Molecular ; Molecular dynamics ; Molecular structure ; molecular-dynamics simulation ; na+ counterions ; Nitrogen - chemistry ; phase-behavior ; phosphatidylcholine ; Phosphatidylcholines - chemistry ; phospholipid-bilayers ; Phosphorus - chemistry ; Proteins ; Reproducibility of Results ; Self assembly ; Simulation ; solid-state nmr ; Stacks ; Time Factors ; Trehalose ; Trehalose - chemistry ; Trehalose - metabolism ; Water - chemistry ; x-ray-diffraction</subject><ispartof>Biophysical journal, 2009-07, Vol.97 (2), p.490-499</ispartof><rights>2009 Biophysical Society</rights><rights>Copyright Biophysical Society Jul 22, 2009</rights><rights>2009 by the Biophysical Society.. 2009 Biophysical Society</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23</citedby><cites>FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711319/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711319/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19619463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Golovina, Elena A.</creatorcontrib><creatorcontrib>Golovin, Andrey V.</creatorcontrib><creatorcontrib>Hoekstra, Folkert A.</creatorcontrib><creatorcontrib>Faller, Roland</creatorcontrib><title>Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related structural properties of dehydrated bilayers in atomic detail. The starting conformation of a palmitoyloleolylphosphatidylcholine lipid bilayer in excess water was been obtained by self-assembly. A series of molecular-dynamics simulations of palmitoyloleolylphosphatidylcholine with different degrees of dehydration (28.5, 11.7, and 5.4 waters per lipid) and different molar trehalose/lipid ratios (&lt;1:1, 1:1, and &gt;1:1) were carried out in the NPT ensemble. Water removal causes the formation of multilamellar “stacks” through periodic boundary conditions. The headgroups reorient from pointing outward to inward with dehydration. This causes changes in the electrostatic interactions between interfaces, resulting in interface interpenetration. Interpenetration creates self-spacing of the bilayers and prevents gel-phase formation. At lower concentrations, trehalose does not separate the interfaces, and acting together with self-spacing, it causes a considerable increase of APL. APL decreases at higher trehalose concentrations when the layer of sugar physically separates the interfaces. When interfaces are separated, the model confirms the water replacement hypothesis.</description><subject>APL (programming language)</subject><subject>Atomic structure</subject><subject>Dehydration</subject><subject>full hydration</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>lipid-bilayers</subject><subject>Lipids</subject><subject>Membrane</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>molecular-dynamics simulation</subject><subject>na+ counterions</subject><subject>Nitrogen - chemistry</subject><subject>phase-behavior</subject><subject>phosphatidylcholine</subject><subject>Phosphatidylcholines - chemistry</subject><subject>phospholipid-bilayers</subject><subject>Phosphorus - chemistry</subject><subject>Proteins</subject><subject>Reproducibility of Results</subject><subject>Self assembly</subject><subject>Simulation</subject><subject>solid-state nmr</subject><subject>Stacks</subject><subject>Time Factors</subject><subject>Trehalose</subject><subject>Trehalose - chemistry</subject><subject>Trehalose - metabolism</subject><subject>Water - chemistry</subject><subject>x-ray-diffraction</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9ks9u1DAQxiMEokvhAbigiAOcEsZO7CRUQiqFUqRKSBTE0XKcya6XxA6202pvPARPyJPgaFf8O_Rkaeb3fTO2vyR5TCAnQPiLbd5O25wCNDmwHKC6k6wIK2kGUPO7yQoAeFaUDTtKHni_BSCUAbmfHJGGk6bkxSoxX2RAl37EaZAKRzQhvdhNNmzQa59qk54GO2qVvsEg9fDz-49zqYJ1fimgG7XRZp1GOr0KblZhdpjaPjY3u85F5y59rQe5ixOuglRf_cPkXi8Hj48O53Hy-fztp7OL7PLDu_dnp5eZ4pSFTGJBCwpl0zHkbUf7lpBSVUixUhQ4Kdu-pgjQY4sFY6C6vmxqwlmsdlLS4jh5ufe9kWtcdkQjjHRKe2GlFoNunXQ7cTM7YYblmObWi6KuyqKM4ld7cSyO2Kn4KE4OYnJ6XESLwb8dozdiba8FrQgpSBMNnh8MnP02ow9i1F7hMEiDdvaiqita06ZZRj27leQVA8pIHcGn_4FbOzsT31BQwnhTcUYiRPaQctZ7h_3vnQmIJTFiK2JixJIYAUzExETNk78v-0dxiEgETvYAxv-61uiEVxqNwk47VEF0Vt9i_wteIdXM</recordid><startdate>20090722</startdate><enddate>20090722</enddate><creator>Golovina, Elena A.</creator><creator>Golovin, Andrey V.</creator><creator>Hoekstra, Folkert A.</creator><creator>Faller, Roland</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope><scope>QVL</scope></search><sort><creationdate>20090722</creationdate><title>Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks</title><author>Golovina, Elena A. ; Golovin, Andrey V. ; Hoekstra, Folkert A. ; Faller, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>APL (programming language)</topic><topic>Atomic structure</topic><topic>Dehydration</topic><topic>full hydration</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>lipid-bilayers</topic><topic>Lipids</topic><topic>Membrane</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>molecular-dynamics simulation</topic><topic>na+ counterions</topic><topic>Nitrogen - chemistry</topic><topic>phase-behavior</topic><topic>phosphatidylcholine</topic><topic>Phosphatidylcholines - chemistry</topic><topic>phospholipid-bilayers</topic><topic>Phosphorus - chemistry</topic><topic>Proteins</topic><topic>Reproducibility of Results</topic><topic>Self assembly</topic><topic>Simulation</topic><topic>solid-state nmr</topic><topic>Stacks</topic><topic>Time Factors</topic><topic>Trehalose</topic><topic>Trehalose - chemistry</topic><topic>Trehalose - metabolism</topic><topic>Water - chemistry</topic><topic>x-ray-diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golovina, Elena A.</creatorcontrib><creatorcontrib>Golovin, Andrey V.</creatorcontrib><creatorcontrib>Hoekstra, Folkert A.</creatorcontrib><creatorcontrib>Faller, Roland</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golovina, Elena A.</au><au>Golovin, Andrey V.</au><au>Hoekstra, Folkert A.</au><au>Faller, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2009-07-22</date><risdate>2009</risdate><volume>97</volume><issue>2</issue><spage>490</spage><epage>499</epage><pages>490-499</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related structural properties of dehydrated bilayers in atomic detail. The starting conformation of a palmitoyloleolylphosphatidylcholine lipid bilayer in excess water was been obtained by self-assembly. A series of molecular-dynamics simulations of palmitoyloleolylphosphatidylcholine with different degrees of dehydration (28.5, 11.7, and 5.4 waters per lipid) and different molar trehalose/lipid ratios (&lt;1:1, 1:1, and &gt;1:1) were carried out in the NPT ensemble. Water removal causes the formation of multilamellar “stacks” through periodic boundary conditions. The headgroups reorient from pointing outward to inward with dehydration. This causes changes in the electrostatic interactions between interfaces, resulting in interface interpenetration. Interpenetration creates self-spacing of the bilayers and prevents gel-phase formation. At lower concentrations, trehalose does not separate the interfaces, and acting together with self-spacing, it causes a considerable increase of APL. APL decreases at higher trehalose concentrations when the layer of sugar physically separates the interfaces. When interfaces are separated, the model confirms the water replacement hypothesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19619463</pmid><doi>10.1016/j.bpj.2009.05.007</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2009-07, Vol.97 (2), p.490-499
issn 0006-3495
1542-0086
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_387434
source PubMed Central
subjects APL (programming language)
Atomic structure
Dehydration
full hydration
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
lipid-bilayers
Lipids
Membrane
Membranes
Models, Molecular
Molecular dynamics
Molecular structure
molecular-dynamics simulation
na+ counterions
Nitrogen - chemistry
phase-behavior
phosphatidylcholine
Phosphatidylcholines - chemistry
phospholipid-bilayers
Phosphorus - chemistry
Proteins
Reproducibility of Results
Self assembly
Simulation
solid-state nmr
Stacks
Time Factors
Trehalose
Trehalose - chemistry
Trehalose - metabolism
Water - chemistry
x-ray-diffraction
title Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Replacement%20Hypothesis%20in%20Atomic%20Detail%E2%80%94Factors%20Determining%20the%20Structure%20of%20Dehydrated%20Bilayer%20Stacks&rft.jtitle=Biophysical%20journal&rft.au=Golovina,%20Elena%20A.&rft.date=2009-07-22&rft.volume=97&rft.issue=2&rft.spage=490&rft.epage=499&rft.pages=490-499&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2009.05.007&rft_dat=%3Cproquest_wagen%3E787282994%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215697651&rft_id=info:pmid/19619463&rfr_iscdi=true