Loading…
Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks
According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related st...
Saved in:
Published in: | Biophysical journal 2009-07, Vol.97 (2), p.490-499 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23 |
---|---|
cites | cdi_FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23 |
container_end_page | 499 |
container_issue | 2 |
container_start_page | 490 |
container_title | Biophysical journal |
container_volume | 97 |
creator | Golovina, Elena A. Golovin, Andrey V. Hoekstra, Folkert A. Faller, Roland |
description | According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related structural properties of dehydrated bilayers in atomic detail. The starting conformation of a palmitoyloleolylphosphatidylcholine lipid bilayer in excess water was been obtained by self-assembly. A series of molecular-dynamics simulations of palmitoyloleolylphosphatidylcholine with different degrees of dehydration (28.5, 11.7, and 5.4 waters per lipid) and different molar trehalose/lipid ratios (1:1) were carried out in the NPT ensemble. Water removal causes the formation of multilamellar “stacks” through periodic boundary conditions. The headgroups reorient from pointing outward to inward with dehydration. This causes changes in the electrostatic interactions between interfaces, resulting in interface interpenetration. Interpenetration creates self-spacing of the bilayers and prevents gel-phase formation. At lower concentrations, trehalose does not separate the interfaces, and acting together with self-spacing, it causes a considerable increase of APL. APL decreases at higher trehalose concentrations when the layer of sugar physically separates the interfaces. When interfaces are separated, the model confirms the water replacement hypothesis. |
doi_str_mv | 10.1016/j.bpj.2009.05.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_387434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349509009576</els_id><sourcerecordid>787282994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23</originalsourceid><addsrcrecordid>eNp9ks9u1DAQxiMEokvhAbigiAOcEsZO7CRUQiqFUqRKSBTE0XKcya6XxA6202pvPARPyJPgaFf8O_Rkaeb3fTO2vyR5TCAnQPiLbd5O25wCNDmwHKC6k6wIK2kGUPO7yQoAeFaUDTtKHni_BSCUAbmfHJGGk6bkxSoxX2RAl37EaZAKRzQhvdhNNmzQa59qk54GO2qVvsEg9fDz-49zqYJ1fimgG7XRZp1GOr0KblZhdpjaPjY3u85F5y59rQe5ixOuglRf_cPkXi8Hj48O53Hy-fztp7OL7PLDu_dnp5eZ4pSFTGJBCwpl0zHkbUf7lpBSVUixUhQ4Kdu-pgjQY4sFY6C6vmxqwlmsdlLS4jh5ufe9kWtcdkQjjHRKe2GlFoNunXQ7cTM7YYblmObWi6KuyqKM4ld7cSyO2Kn4KE4OYnJ6XESLwb8dozdiba8FrQgpSBMNnh8MnP02ow9i1F7hMEiDdvaiqita06ZZRj27leQVA8pIHcGn_4FbOzsT31BQwnhTcUYiRPaQctZ7h_3vnQmIJTFiK2JixJIYAUzExETNk78v-0dxiEgETvYAxv-61uiEVxqNwk47VEF0Vt9i_wteIdXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215697651</pqid></control><display><type>article</type><title>Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks</title><source>PubMed Central</source><creator>Golovina, Elena A. ; Golovin, Andrey V. ; Hoekstra, Folkert A. ; Faller, Roland</creator><creatorcontrib>Golovina, Elena A. ; Golovin, Andrey V. ; Hoekstra, Folkert A. ; Faller, Roland</creatorcontrib><description>According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related structural properties of dehydrated bilayers in atomic detail. The starting conformation of a palmitoyloleolylphosphatidylcholine lipid bilayer in excess water was been obtained by self-assembly. A series of molecular-dynamics simulations of palmitoyloleolylphosphatidylcholine with different degrees of dehydration (28.5, 11.7, and 5.4 waters per lipid) and different molar trehalose/lipid ratios (<1:1, 1:1, and >1:1) were carried out in the NPT ensemble. Water removal causes the formation of multilamellar “stacks” through periodic boundary conditions. The headgroups reorient from pointing outward to inward with dehydration. This causes changes in the electrostatic interactions between interfaces, resulting in interface interpenetration. Interpenetration creates self-spacing of the bilayers and prevents gel-phase formation. At lower concentrations, trehalose does not separate the interfaces, and acting together with self-spacing, it causes a considerable increase of APL. APL decreases at higher trehalose concentrations when the layer of sugar physically separates the interfaces. When interfaces are separated, the model confirms the water replacement hypothesis.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2009.05.007</identifier><identifier>PMID: 19619463</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>APL (programming language) ; Atomic structure ; Dehydration ; full hydration ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; lipid-bilayers ; Lipids ; Membrane ; Membranes ; Models, Molecular ; Molecular dynamics ; Molecular structure ; molecular-dynamics simulation ; na+ counterions ; Nitrogen - chemistry ; phase-behavior ; phosphatidylcholine ; Phosphatidylcholines - chemistry ; phospholipid-bilayers ; Phosphorus - chemistry ; Proteins ; Reproducibility of Results ; Self assembly ; Simulation ; solid-state nmr ; Stacks ; Time Factors ; Trehalose ; Trehalose - chemistry ; Trehalose - metabolism ; Water - chemistry ; x-ray-diffraction</subject><ispartof>Biophysical journal, 2009-07, Vol.97 (2), p.490-499</ispartof><rights>2009 Biophysical Society</rights><rights>Copyright Biophysical Society Jul 22, 2009</rights><rights>2009 by the Biophysical Society.. 2009 Biophysical Society</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23</citedby><cites>FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711319/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2711319/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19619463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Golovina, Elena A.</creatorcontrib><creatorcontrib>Golovin, Andrey V.</creatorcontrib><creatorcontrib>Hoekstra, Folkert A.</creatorcontrib><creatorcontrib>Faller, Roland</creatorcontrib><title>Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related structural properties of dehydrated bilayers in atomic detail. The starting conformation of a palmitoyloleolylphosphatidylcholine lipid bilayer in excess water was been obtained by self-assembly. A series of molecular-dynamics simulations of palmitoyloleolylphosphatidylcholine with different degrees of dehydration (28.5, 11.7, and 5.4 waters per lipid) and different molar trehalose/lipid ratios (<1:1, 1:1, and >1:1) were carried out in the NPT ensemble. Water removal causes the formation of multilamellar “stacks” through periodic boundary conditions. The headgroups reorient from pointing outward to inward with dehydration. This causes changes in the electrostatic interactions between interfaces, resulting in interface interpenetration. Interpenetration creates self-spacing of the bilayers and prevents gel-phase formation. At lower concentrations, trehalose does not separate the interfaces, and acting together with self-spacing, it causes a considerable increase of APL. APL decreases at higher trehalose concentrations when the layer of sugar physically separates the interfaces. When interfaces are separated, the model confirms the water replacement hypothesis.</description><subject>APL (programming language)</subject><subject>Atomic structure</subject><subject>Dehydration</subject><subject>full hydration</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>lipid-bilayers</subject><subject>Lipids</subject><subject>Membrane</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>molecular-dynamics simulation</subject><subject>na+ counterions</subject><subject>Nitrogen - chemistry</subject><subject>phase-behavior</subject><subject>phosphatidylcholine</subject><subject>Phosphatidylcholines - chemistry</subject><subject>phospholipid-bilayers</subject><subject>Phosphorus - chemistry</subject><subject>Proteins</subject><subject>Reproducibility of Results</subject><subject>Self assembly</subject><subject>Simulation</subject><subject>solid-state nmr</subject><subject>Stacks</subject><subject>Time Factors</subject><subject>Trehalose</subject><subject>Trehalose - chemistry</subject><subject>Trehalose - metabolism</subject><subject>Water - chemistry</subject><subject>x-ray-diffraction</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9ks9u1DAQxiMEokvhAbigiAOcEsZO7CRUQiqFUqRKSBTE0XKcya6XxA6202pvPARPyJPgaFf8O_Rkaeb3fTO2vyR5TCAnQPiLbd5O25wCNDmwHKC6k6wIK2kGUPO7yQoAeFaUDTtKHni_BSCUAbmfHJGGk6bkxSoxX2RAl37EaZAKRzQhvdhNNmzQa59qk54GO2qVvsEg9fDz-49zqYJ1fimgG7XRZp1GOr0KblZhdpjaPjY3u85F5y59rQe5ixOuglRf_cPkXi8Hj48O53Hy-fztp7OL7PLDu_dnp5eZ4pSFTGJBCwpl0zHkbUf7lpBSVUixUhQ4Kdu-pgjQY4sFY6C6vmxqwlmsdlLS4jh5ufe9kWtcdkQjjHRKe2GlFoNunXQ7cTM7YYblmObWi6KuyqKM4ld7cSyO2Kn4KE4OYnJ6XESLwb8dozdiba8FrQgpSBMNnh8MnP02ow9i1F7hMEiDdvaiqita06ZZRj27leQVA8pIHcGn_4FbOzsT31BQwnhTcUYiRPaQctZ7h_3vnQmIJTFiK2JixJIYAUzExETNk78v-0dxiEgETvYAxv-61uiEVxqNwk47VEF0Vt9i_wteIdXM</recordid><startdate>20090722</startdate><enddate>20090722</enddate><creator>Golovina, Elena A.</creator><creator>Golovin, Andrey V.</creator><creator>Hoekstra, Folkert A.</creator><creator>Faller, Roland</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope><scope>QVL</scope></search><sort><creationdate>20090722</creationdate><title>Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks</title><author>Golovina, Elena A. ; Golovin, Andrey V. ; Hoekstra, Folkert A. ; Faller, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>APL (programming language)</topic><topic>Atomic structure</topic><topic>Dehydration</topic><topic>full hydration</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>lipid-bilayers</topic><topic>Lipids</topic><topic>Membrane</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>molecular-dynamics simulation</topic><topic>na+ counterions</topic><topic>Nitrogen - chemistry</topic><topic>phase-behavior</topic><topic>phosphatidylcholine</topic><topic>Phosphatidylcholines - chemistry</topic><topic>phospholipid-bilayers</topic><topic>Phosphorus - chemistry</topic><topic>Proteins</topic><topic>Reproducibility of Results</topic><topic>Self assembly</topic><topic>Simulation</topic><topic>solid-state nmr</topic><topic>Stacks</topic><topic>Time Factors</topic><topic>Trehalose</topic><topic>Trehalose - chemistry</topic><topic>Trehalose - metabolism</topic><topic>Water - chemistry</topic><topic>x-ray-diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golovina, Elena A.</creatorcontrib><creatorcontrib>Golovin, Andrey V.</creatorcontrib><creatorcontrib>Hoekstra, Folkert A.</creatorcontrib><creatorcontrib>Faller, Roland</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golovina, Elena A.</au><au>Golovin, Andrey V.</au><au>Hoekstra, Folkert A.</au><au>Faller, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2009-07-22</date><risdate>2009</risdate><volume>97</volume><issue>2</issue><spage>490</spage><epage>499</epage><pages>490-499</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>According to the water replacement hypothesis, trehalose stabilizes dry membranes by preventing the decrease of spacing between membrane lipids under dehydration. In this study, we use molecular-dynamics simulations to investigate the influence of trehalose on the area per lipid (APL) and related structural properties of dehydrated bilayers in atomic detail. The starting conformation of a palmitoyloleolylphosphatidylcholine lipid bilayer in excess water was been obtained by self-assembly. A series of molecular-dynamics simulations of palmitoyloleolylphosphatidylcholine with different degrees of dehydration (28.5, 11.7, and 5.4 waters per lipid) and different molar trehalose/lipid ratios (<1:1, 1:1, and >1:1) were carried out in the NPT ensemble. Water removal causes the formation of multilamellar “stacks” through periodic boundary conditions. The headgroups reorient from pointing outward to inward with dehydration. This causes changes in the electrostatic interactions between interfaces, resulting in interface interpenetration. Interpenetration creates self-spacing of the bilayers and prevents gel-phase formation. At lower concentrations, trehalose does not separate the interfaces, and acting together with self-spacing, it causes a considerable increase of APL. APL decreases at higher trehalose concentrations when the layer of sugar physically separates the interfaces. When interfaces are separated, the model confirms the water replacement hypothesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19619463</pmid><doi>10.1016/j.bpj.2009.05.007</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2009-07, Vol.97 (2), p.490-499 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_387434 |
source | PubMed Central |
subjects | APL (programming language) Atomic structure Dehydration full hydration Lipid Bilayers - chemistry Lipid Bilayers - metabolism lipid-bilayers Lipids Membrane Membranes Models, Molecular Molecular dynamics Molecular structure molecular-dynamics simulation na+ counterions Nitrogen - chemistry phase-behavior phosphatidylcholine Phosphatidylcholines - chemistry phospholipid-bilayers Phosphorus - chemistry Proteins Reproducibility of Results Self assembly Simulation solid-state nmr Stacks Time Factors Trehalose Trehalose - chemistry Trehalose - metabolism Water - chemistry x-ray-diffraction |
title | Water Replacement Hypothesis in Atomic Detail—Factors Determining the Structure of Dehydrated Bilayer Stacks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Replacement%20Hypothesis%20in%20Atomic%20Detail%E2%80%94Factors%20Determining%20the%20Structure%20of%20Dehydrated%20Bilayer%20Stacks&rft.jtitle=Biophysical%20journal&rft.au=Golovina,%20Elena%20A.&rft.date=2009-07-22&rft.volume=97&rft.issue=2&rft.spage=490&rft.epage=499&rft.pages=490-499&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2009.05.007&rft_dat=%3Cproquest_wagen%3E787282994%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c625t-ae3232049d5e6bd2fb114c7e2e7c20614bf82e00febe3550cdf49816582edaa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215697651&rft_id=info:pmid/19619463&rfr_iscdi=true |