Loading…
In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2
In vertebrates and bacteria, heparosan the precursor of heparin is synthesized by glycosyltransferases via the stepwise addition of UDP-N-acetylglucosamine and UDP-glucuronic acid. As heparin-like molecules represent a great interest in the pharmaceutical area, the cryptic Pasteurella multocida hepa...
Saved in:
Published in: | Applied microbiology and biotechnology 2010-02, Vol.85 (6), p.1881-1891 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c625t-4be135eb93ef8f660cbbcb9f0a00fe7d392e1dcb69a9bdb5cf0cd1f7b431600f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c625t-4be135eb93ef8f660cbbcb9f0a00fe7d392e1dcb69a9bdb5cf0cd1f7b431600f3 |
container_end_page | 1891 |
container_issue | 6 |
container_start_page | 1881 |
container_title | Applied microbiology and biotechnology |
container_volume | 85 |
creator | Chavaroche, A.A.E Springer, J Kooy, F.K Boeriu, C.G Eggink, G |
description | In vertebrates and bacteria, heparosan the precursor of heparin is synthesized by glycosyltransferases via the stepwise addition of UDP-N-acetylglucosamine and UDP-glucuronic acid. As heparin-like molecules represent a great interest in the pharmaceutical area, the cryptic
Pasteurella multocida
heparosan synthase PmHS2 found to catalyze heparosan synthesis using substrate analogs has been studied. In this paper, we report an efficient way to purify PmHS2 and to maintain its activity stable during 6 months storage at −80 °C using His-tag purification and a desalting step. In the presence of 1 mM of each nucleotide sugar, purified PmHS2 synthesized polymers up to an average molecular weight of 130 kDa. With 5 mM of UDP-GlcUA and 5 mM of UDP-GlcNAc, an optimal specific activity, from 3 to 6 h of incubation, was found to be about 0.145 nmol/μg/min, and polymers up to an average of 102 kDa were synthesized in 24 h. In this study, we show that the chain length distribution of heparosan polymers can be controlled by change of the initial nucleotide sugar concentration. It was observed that low substrate concentration favors the formation of high molecular weight heparosan polymer with a low polydispersity while high substrate concentration did the opposite. Similarities in the polymerization mechanism between PmHS2, PmHS1, and PmHAS are discussed. |
doi_str_mv | 10.1007/s00253-009-2214-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_389961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1949700391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625t-4be135eb93ef8f660cbbcb9f0a00fe7d392e1dcb69a9bdb5cf0cd1f7b431600f3</originalsourceid><addsrcrecordid>eNqFkkFv1DAUhCMEotvCD-AAipAqToFnO3ZiDkioAlppBZWAs7Ede9dVYm_tpFX_PQ5ZaOFQLrbk983kZTRF8QzBawTQvEkAmJIKgFcYo7rCD4oVqgmugKH6YbEC1NCqobw9KA5TugBAuGXscXGAeEMZbWFV_Djz5ZUbYyjTjR-3JrlUBltuzU7GkKQvp-T8poxGh0E5L_1Ynss0mimavpflMPVj0K6TdxS_jGQy5flw-hU_KR5Z2SfzdH8fFd8_fvh2clqtv3w6O3m_rjTDdKxqZRChRnFibGsZA62UVtyCBLCm6QjHBnVaMS656hTVFnSHbKNqglhGyFHxdvG9lhvj887GCy-jdkkE6UTvVJTxRlxPUfh-vnaTSoK0nDOUxe8WcX4cTKeNH6PsxS66YRbNBn9PvNuKTbgSuEUIU8gGr_YGMVxOJo1icEnPEXkTpiSamnLMKfD_k4S0La5rlsmX_5AXYYo-hyhw9moJ4_PmaIF0Dj9FY_8sjUDMJRFLSUQuiZhLInDWvLj7t7eKfSsycLwHZNKyt1H6OcffHMakJbhuMocXLuVRTjzebnjf158vIiuDkJuYjT-vca5mBhuo75mjfFDyE7U26dE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229583691</pqid></control><display><type>article</type><title>In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Chavaroche, A.A.E ; Springer, J ; Kooy, F.K ; Boeriu, C.G ; Eggink, G</creator><creatorcontrib>Chavaroche, A.A.E ; Springer, J ; Kooy, F.K ; Boeriu, C.G ; Eggink, G</creatorcontrib><description>In vertebrates and bacteria, heparosan the precursor of heparin is synthesized by glycosyltransferases via the stepwise addition of UDP-N-acetylglucosamine and UDP-glucuronic acid. As heparin-like molecules represent a great interest in the pharmaceutical area, the cryptic
Pasteurella multocida
heparosan synthase PmHS2 found to catalyze heparosan synthesis using substrate analogs has been studied. In this paper, we report an efficient way to purify PmHS2 and to maintain its activity stable during 6 months storage at −80 °C using His-tag purification and a desalting step. In the presence of 1 mM of each nucleotide sugar, purified PmHS2 synthesized polymers up to an average molecular weight of 130 kDa. With 5 mM of UDP-GlcUA and 5 mM of UDP-GlcNAc, an optimal specific activity, from 3 to 6 h of incubation, was found to be about 0.145 nmol/μg/min, and polymers up to an average of 102 kDa were synthesized in 24 h. In this study, we show that the chain length distribution of heparosan polymers can be controlled by change of the initial nucleotide sugar concentration. It was observed that low substrate concentration favors the formation of high molecular weight heparosan polymer with a low polydispersity while high substrate concentration did the opposite. Similarities in the polymerization mechanism between PmHS2, PmHS1, and PmHAS are discussed.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-009-2214-2</identifier><identifier>PMID: 19756580</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>acid ; Anticoagulants ; Bacterial Proteins - chemistry ; Biological and medical sciences ; Biomedical and Life Sciences ; biosynthesis ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; capsular polysaccharide ; Carbohydrates ; chemoenzymatic synthesis ; Cloning ; E coli ; Enzyme Stability ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Genetic recombination ; glycosyltransferases ; Glycosyltransferases - chemistry ; Glycosyltransferases - metabolism ; hyaluronan synthase ; identification ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Molecular weight ; molecular-weight heparins ; Pasteurella multocida ; Pasteurella multocida - enzymology ; Polymerization ; Polymers ; Polysaccharides - biosynthesis ; Polysaccharides - chemistry ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; RNA polymerase ; streptococcus ; Studies ; Sugar ; Uridine Diphosphate Sugars - chemistry</subject><ispartof>Applied microbiology and biotechnology, 2010-02, Vol.85 (6), p.1881-1891</ispartof><rights>The Author(s) 2009</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2010</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c625t-4be135eb93ef8f660cbbcb9f0a00fe7d392e1dcb69a9bdb5cf0cd1f7b431600f3</citedby><cites>FETCH-LOGICAL-c625t-4be135eb93ef8f660cbbcb9f0a00fe7d392e1dcb69a9bdb5cf0cd1f7b431600f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/229583691/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/229583691?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22383247$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19756580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chavaroche, A.A.E</creatorcontrib><creatorcontrib>Springer, J</creatorcontrib><creatorcontrib>Kooy, F.K</creatorcontrib><creatorcontrib>Boeriu, C.G</creatorcontrib><creatorcontrib>Eggink, G</creatorcontrib><title>In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>In vertebrates and bacteria, heparosan the precursor of heparin is synthesized by glycosyltransferases via the stepwise addition of UDP-N-acetylglucosamine and UDP-glucuronic acid. As heparin-like molecules represent a great interest in the pharmaceutical area, the cryptic
Pasteurella multocida
heparosan synthase PmHS2 found to catalyze heparosan synthesis using substrate analogs has been studied. In this paper, we report an efficient way to purify PmHS2 and to maintain its activity stable during 6 months storage at −80 °C using His-tag purification and a desalting step. In the presence of 1 mM of each nucleotide sugar, purified PmHS2 synthesized polymers up to an average molecular weight of 130 kDa. With 5 mM of UDP-GlcUA and 5 mM of UDP-GlcNAc, an optimal specific activity, from 3 to 6 h of incubation, was found to be about 0.145 nmol/μg/min, and polymers up to an average of 102 kDa were synthesized in 24 h. In this study, we show that the chain length distribution of heparosan polymers can be controlled by change of the initial nucleotide sugar concentration. It was observed that low substrate concentration favors the formation of high molecular weight heparosan polymer with a low polydispersity while high substrate concentration did the opposite. Similarities in the polymerization mechanism between PmHS2, PmHS1, and PmHAS are discussed.</description><subject>acid</subject><subject>Anticoagulants</subject><subject>Bacterial Proteins - chemistry</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>biosynthesis</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>capsular polysaccharide</subject><subject>Carbohydrates</subject><subject>chemoenzymatic synthesis</subject><subject>Cloning</subject><subject>E coli</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Genetic recombination</subject><subject>glycosyltransferases</subject><subject>Glycosyltransferases - chemistry</subject><subject>Glycosyltransferases - metabolism</subject><subject>hyaluronan synthase</subject><subject>identification</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Molecular weight</subject><subject>molecular-weight heparins</subject><subject>Pasteurella multocida</subject><subject>Pasteurella multocida - enzymology</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polysaccharides - biosynthesis</subject><subject>Polysaccharides - chemistry</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA polymerase</subject><subject>streptococcus</subject><subject>Studies</subject><subject>Sugar</subject><subject>Uridine Diphosphate Sugars - chemistry</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkkFv1DAUhCMEotvCD-AAipAqToFnO3ZiDkioAlppBZWAs7Ede9dVYm_tpFX_PQ5ZaOFQLrbk983kZTRF8QzBawTQvEkAmJIKgFcYo7rCD4oVqgmugKH6YbEC1NCqobw9KA5TugBAuGXscXGAeEMZbWFV_Djz5ZUbYyjTjR-3JrlUBltuzU7GkKQvp-T8poxGh0E5L_1Ynss0mimavpflMPVj0K6TdxS_jGQy5flw-hU_KR5Z2SfzdH8fFd8_fvh2clqtv3w6O3m_rjTDdKxqZRChRnFibGsZA62UVtyCBLCm6QjHBnVaMS656hTVFnSHbKNqglhGyFHxdvG9lhvj887GCy-jdkkE6UTvVJTxRlxPUfh-vnaTSoK0nDOUxe8WcX4cTKeNH6PsxS66YRbNBn9PvNuKTbgSuEUIU8gGr_YGMVxOJo1icEnPEXkTpiSamnLMKfD_k4S0La5rlsmX_5AXYYo-hyhw9moJ4_PmaIF0Dj9FY_8sjUDMJRFLSUQuiZhLInDWvLj7t7eKfSsycLwHZNKyt1H6OcffHMakJbhuMocXLuVRTjzebnjf158vIiuDkJuYjT-vca5mBhuo75mjfFDyE7U26dE</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Chavaroche, A.A.E</creator><creator>Springer, J</creator><creator>Kooy, F.K</creator><creator>Boeriu, C.G</creator><creator>Eggink, G</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>C6C</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope><scope>QVL</scope></search><sort><creationdate>20100201</creationdate><title>In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2</title><author>Chavaroche, A.A.E ; Springer, J ; Kooy, F.K ; Boeriu, C.G ; Eggink, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625t-4be135eb93ef8f660cbbcb9f0a00fe7d392e1dcb69a9bdb5cf0cd1f7b431600f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>acid</topic><topic>Anticoagulants</topic><topic>Bacterial Proteins - chemistry</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>biosynthesis</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>capsular polysaccharide</topic><topic>Carbohydrates</topic><topic>chemoenzymatic synthesis</topic><topic>Cloning</topic><topic>E coli</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Genetic recombination</topic><topic>glycosyltransferases</topic><topic>Glycosyltransferases - chemistry</topic><topic>Glycosyltransferases - metabolism</topic><topic>hyaluronan synthase</topic><topic>identification</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Molecular weight</topic><topic>molecular-weight heparins</topic><topic>Pasteurella multocida</topic><topic>Pasteurella multocida - enzymology</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polysaccharides - biosynthesis</topic><topic>Polysaccharides - chemistry</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA polymerase</topic><topic>streptococcus</topic><topic>Studies</topic><topic>Sugar</topic><topic>Uridine Diphosphate Sugars - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavaroche, A.A.E</creatorcontrib><creatorcontrib>Springer, J</creatorcontrib><creatorcontrib>Kooy, F.K</creatorcontrib><creatorcontrib>Boeriu, C.G</creatorcontrib><creatorcontrib>Eggink, G</creatorcontrib><collection>AGRIS</collection><collection>SpringerOpen</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavaroche, A.A.E</au><au>Springer, J</au><au>Kooy, F.K</au><au>Boeriu, C.G</au><au>Eggink, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>85</volume><issue>6</issue><spage>1881</spage><epage>1891</epage><pages>1881-1891</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>In vertebrates and bacteria, heparosan the precursor of heparin is synthesized by glycosyltransferases via the stepwise addition of UDP-N-acetylglucosamine and UDP-glucuronic acid. As heparin-like molecules represent a great interest in the pharmaceutical area, the cryptic
Pasteurella multocida
heparosan synthase PmHS2 found to catalyze heparosan synthesis using substrate analogs has been studied. In this paper, we report an efficient way to purify PmHS2 and to maintain its activity stable during 6 months storage at −80 °C using His-tag purification and a desalting step. In the presence of 1 mM of each nucleotide sugar, purified PmHS2 synthesized polymers up to an average molecular weight of 130 kDa. With 5 mM of UDP-GlcUA and 5 mM of UDP-GlcNAc, an optimal specific activity, from 3 to 6 h of incubation, was found to be about 0.145 nmol/μg/min, and polymers up to an average of 102 kDa were synthesized in 24 h. In this study, we show that the chain length distribution of heparosan polymers can be controlled by change of the initial nucleotide sugar concentration. It was observed that low substrate concentration favors the formation of high molecular weight heparosan polymer with a low polydispersity while high substrate concentration did the opposite. Similarities in the polymerization mechanism between PmHS2, PmHS1, and PmHAS are discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19756580</pmid><doi>10.1007/s00253-009-2214-2</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2010-02, Vol.85 (6), p.1881-1891 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_389961 |
source | ABI/INFORM Global; Springer Nature |
subjects | acid Anticoagulants Bacterial Proteins - chemistry Biological and medical sciences Biomedical and Life Sciences biosynthesis Biotechnologically Relevant Enzymes and Proteins Biotechnology capsular polysaccharide Carbohydrates chemoenzymatic synthesis Cloning E coli Enzyme Stability Enzymes Fundamental and applied biological sciences. Psychology Gene expression Genetic recombination glycosyltransferases Glycosyltransferases - chemistry Glycosyltransferases - metabolism hyaluronan synthase identification Life Sciences Microbial Genetics and Genomics Microbiology Molecular weight molecular-weight heparins Pasteurella multocida Pasteurella multocida - enzymology Polymerization Polymers Polysaccharides - biosynthesis Polysaccharides - chemistry Proteins Recombinant Proteins - chemistry Recombinant Proteins - metabolism RNA polymerase streptococcus Studies Sugar Uridine Diphosphate Sugars - chemistry |
title | In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20synthesis%20of%20heparosan%20using%20recombinant%20Pasteurella%20multocida%20heparosan%20synthase%20PmHS2&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Chavaroche,%20A.A.E&rft.date=2010-02-01&rft.volume=85&rft.issue=6&rft.spage=1881&rft.epage=1891&rft.pages=1881-1891&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-009-2214-2&rft_dat=%3Cproquest_wagen%3E1949700391%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c625t-4be135eb93ef8f660cbbcb9f0a00fe7d392e1dcb69a9bdb5cf0cd1f7b431600f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=229583691&rft_id=info:pmid/19756580&rfr_iscdi=true |