Loading…

Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines

Tropical forests will experience relatively large changes in temperature and rainfall towards the end of this century. Little is known about how tropical trees will respond to these changes. We used tree rings to establish climate-growth relations of a pioneer tree, Mimosa acantholoba, occurring in...

Full description

Saved in:
Bibliographic Details
Published in:Global change biology 2010-07, Vol.16 (7), p.2001-2012
Main Authors: BRIENEN, ROEL J.W, LEBRIJA-TREJOS, EDWIN, ZUIDEMA, PIETER A, MARTÍNEZ-RAMOS, MIGUEL
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tropical forests will experience relatively large changes in temperature and rainfall towards the end of this century. Little is known about how tropical trees will respond to these changes. We used tree rings to establish climate-growth relations of a pioneer tree, Mimosa acantholoba, occurring in tropical dry secondary forests in southern Mexico. The role of large-scale climatic drivers in determining interannual growth variation was studied by correlating growth to sea surface temperature anomalies (SSTA) of the Atlantic and Pacific Oceans, including the El Niño-Southern Oscillation (ENSO). Annual growth varied eightfold over 1970-2007, and was correlated with wet season rainfall (r=0.75). Temperature, cloud cover and solar variation did not affect growth, although these climate variables correlated with growth due to their relations with rainfall. Strong positive correlations between growth and SSTA occurred in the North tropical Atlantic during the first half of the year, and in the Pacific during the second half of the year. The Pacific influence corresponded closely to ENSO-like influences with negative effects of high SSTA in the eastern Pacific Niño3.4 region on growth due to decreases in rainfall. During El Niño years growth was reduced by 37%. We estimated how growth would be affected by the predicted trend of decreasing rainfall in Central America towards the end of this century. Using rainfall predictions of two sets of climate models, we estimated that growth at the end of this century will be reduced by 12% under a medium (A1B) and 21% under a high (A2) emission scenario. These results suggest that climate change may have repercussions for the carbon sequestration capacity of tropical dry forests in the region.
ISSN:1354-1013
1365-2486
DOI:10.1111/j.1365-2486.2009.02059.x