Loading…

Kinetic models for detection of toxicity in a microbial fuel cell based biosensor

Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to d...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2011-03, Vol.26 (7), p.3115-3120
Main Authors: Stein, Nienke E., Keesman, Karel J., Hamelers, Hubertus V.M., van Straten, Gerrit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33
cites cdi_FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33
container_end_page 3120
container_issue 7
container_start_page 3115
container_title Biosensors & bioelectronics
container_volume 26
creator Stein, Nienke E.
Keesman, Karel J.
Hamelers, Hubertus V.M.
van Straten, Gerrit
description Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to describe four types of toxicity. To get a stable and sensitive sensor, the overpotential has to be controlled. Simulations with the four modified models were performed to predict the overpotential that gives the most sensitive sensor. These simulations were based on data and parameter values from experimental results under non-toxic conditions. Given the parameter values from experimental results, controlling the overpotential at 250 mV leads to a sensor that is most sensitive to components that influence the whole bacterial metabolism or that influence the substrate affinity constant ( Km). Controlling the overpotential at 105 mV is the most sensitive setting for components influencing the ratio of biochemical over electrochemical reaction rate constants ( K1), while an overpotential of 76 mV gives the most sensitive setting for components that influence the ratio of the forward over backward biochemical rate constants ( K2). The sensitivity of the biosensor was also analyzed for robustness against changes in the model parameters other than toxicity. As an example, the tradeoff between sensitivity and robustness for the model describing changes on K1 (I K1) is presented. The biosensor is sensitive for toxic components and robust for changes in model parameter K2 when overpotential is controlled between 118 and 140 mV under the simulated conditions.
doi_str_mv 10.1016/j.bios.2010.11.049
format article
fullrecord <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_409645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566310008158</els_id><sourcerecordid>864963164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMo7jj6BTxILuKpxySdTnfEiyz-wwUR9BzSSUVq6E7GpNt1v71pZtyjlxSE9x716kfIc84OnHH1-ngYMZWDYNsHPzCpH5AdH_q2kaLtHpId051qOqXaK_KklCNjrOeaPSZXgguuukHtyLcvGGFBR-fkYSo0pEw9LOAWTJGmQJf0Bx0udxQjtXRGl9OIdqJhhYk6mCY62gKebqtALCk_JY-CnQo8u8w9-fHh_ffrT83N14-fr9_dNE6qYWkCcNt34Frdc9YPwMWgvBPSC4BBgPDcOsvlEOwImnHJeghCeObb3mod2nZP3pxzb-1PiBjrY6LNDotJFs2EY7b5ztyu2cRpG6d1LEYyrWRXza_O5lNOv1Yoi5mxbG1shLQWMyipVcuVrEpxVtbipWQI5pRx3pI5MxsGczRbd7NhMJybiqGaXlzi13EGf2_5d_cqeHkR2OLsFLKN2-L3ulYL0VWKe_L2rKts4DdCNsUhRAcec2VkfML_7fEXdlin0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864963164</pqid></control><display><type>article</type><title>Kinetic models for detection of toxicity in a microbial fuel cell based biosensor</title><source>ScienceDirect Freedom Collection</source><creator>Stein, Nienke E. ; Keesman, Karel J. ; Hamelers, Hubertus V.M. ; van Straten, Gerrit</creator><creatorcontrib>Stein, Nienke E. ; Keesman, Karel J. ; Hamelers, Hubertus V.M. ; van Straten, Gerrit</creatorcontrib><description>Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to describe four types of toxicity. To get a stable and sensitive sensor, the overpotential has to be controlled. Simulations with the four modified models were performed to predict the overpotential that gives the most sensitive sensor. These simulations were based on data and parameter values from experimental results under non-toxic conditions. Given the parameter values from experimental results, controlling the overpotential at 250 mV leads to a sensor that is most sensitive to components that influence the whole bacterial metabolism or that influence the substrate affinity constant ( Km). Controlling the overpotential at 105 mV is the most sensitive setting for components influencing the ratio of biochemical over electrochemical reaction rate constants ( K1), while an overpotential of 76 mV gives the most sensitive setting for components that influence the ratio of the forward over backward biochemical rate constants ( K2). The sensitivity of the biosensor was also analyzed for robustness against changes in the model parameters other than toxicity. As an example, the tradeoff between sensitivity and robustness for the model describing changes on K1 (I K1) is presented. The biosensor is sensitive for toxic components and robust for changes in model parameter K2 when overpotential is controlled between 118 and 140 mV under the simulated conditions.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2010.11.049</identifier><identifier>PMID: 21216586</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Bacteria ; Biochemical fuel cells ; Bioelectric Energy Sources - microbiology ; biofilm anode ; Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biosensor ; Biosensors ; Biotechnology ; Computer Simulation ; Fundamental and applied biological sciences. Psychology ; Kinetics ; Mathematical models ; Methods. Procedures. Technologies ; Microbial fuel cell ; Microorganisms ; Models, Biological ; Overpotential ; Polarization ; Rate constants ; Sensitivity ; Sensors ; system ; Toxicity ; Various methods and equipments ; Water Pollutants, Chemical - analysis</subject><ispartof>Biosensors &amp; bioelectronics, 2011-03, Vol.26 (7), p.3115-3120</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33</citedby><cites>FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23922542$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21216586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stein, Nienke E.</creatorcontrib><creatorcontrib>Keesman, Karel J.</creatorcontrib><creatorcontrib>Hamelers, Hubertus V.M.</creatorcontrib><creatorcontrib>van Straten, Gerrit</creatorcontrib><title>Kinetic models for detection of toxicity in a microbial fuel cell based biosensor</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to describe four types of toxicity. To get a stable and sensitive sensor, the overpotential has to be controlled. Simulations with the four modified models were performed to predict the overpotential that gives the most sensitive sensor. These simulations were based on data and parameter values from experimental results under non-toxic conditions. Given the parameter values from experimental results, controlling the overpotential at 250 mV leads to a sensor that is most sensitive to components that influence the whole bacterial metabolism or that influence the substrate affinity constant ( Km). Controlling the overpotential at 105 mV is the most sensitive setting for components influencing the ratio of biochemical over electrochemical reaction rate constants ( K1), while an overpotential of 76 mV gives the most sensitive setting for components that influence the ratio of the forward over backward biochemical rate constants ( K2). The sensitivity of the biosensor was also analyzed for robustness against changes in the model parameters other than toxicity. As an example, the tradeoff between sensitivity and robustness for the model describing changes on K1 (I K1) is presented. The biosensor is sensitive for toxic components and robust for changes in model parameter K2 when overpotential is controlled between 118 and 140 mV under the simulated conditions.</description><subject>Bacteria</subject><subject>Biochemical fuel cells</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>biofilm anode</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensor</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Computer Simulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial fuel cell</subject><subject>Microorganisms</subject><subject>Models, Biological</subject><subject>Overpotential</subject><subject>Polarization</subject><subject>Rate constants</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>system</subject><subject>Toxicity</subject><subject>Various methods and equipments</subject><subject>Water Pollutants, Chemical - analysis</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU-LFDEQxYMo7jj6BTxILuKpxySdTnfEiyz-wwUR9BzSSUVq6E7GpNt1v71pZtyjlxSE9x716kfIc84OnHH1-ngYMZWDYNsHPzCpH5AdH_q2kaLtHpId051qOqXaK_KklCNjrOeaPSZXgguuukHtyLcvGGFBR-fkYSo0pEw9LOAWTJGmQJf0Bx0udxQjtXRGl9OIdqJhhYk6mCY62gKebqtALCk_JY-CnQo8u8w9-fHh_ffrT83N14-fr9_dNE6qYWkCcNt34Frdc9YPwMWgvBPSC4BBgPDcOsvlEOwImnHJeghCeObb3mod2nZP3pxzb-1PiBjrY6LNDotJFs2EY7b5ztyu2cRpG6d1LEYyrWRXza_O5lNOv1Yoi5mxbG1shLQWMyipVcuVrEpxVtbipWQI5pRx3pI5MxsGczRbd7NhMJybiqGaXlzi13EGf2_5d_cqeHkR2OLsFLKN2-L3ulYL0VWKe_L2rKts4DdCNsUhRAcec2VkfML_7fEXdlin0w</recordid><startdate>20110315</startdate><enddate>20110315</enddate><creator>Stein, Nienke E.</creator><creator>Keesman, Karel J.</creator><creator>Hamelers, Hubertus V.M.</creator><creator>van Straten, Gerrit</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>QVL</scope></search><sort><creationdate>20110315</creationdate><title>Kinetic models for detection of toxicity in a microbial fuel cell based biosensor</title><author>Stein, Nienke E. ; Keesman, Karel J. ; Hamelers, Hubertus V.M. ; van Straten, Gerrit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacteria</topic><topic>Biochemical fuel cells</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>biofilm anode</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensor</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Computer Simulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial fuel cell</topic><topic>Microorganisms</topic><topic>Models, Biological</topic><topic>Overpotential</topic><topic>Polarization</topic><topic>Rate constants</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>system</topic><topic>Toxicity</topic><topic>Various methods and equipments</topic><topic>Water Pollutants, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, Nienke E.</creatorcontrib><creatorcontrib>Keesman, Karel J.</creatorcontrib><creatorcontrib>Hamelers, Hubertus V.M.</creatorcontrib><creatorcontrib>van Straten, Gerrit</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NARCIS:Publications</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stein, Nienke E.</au><au>Keesman, Karel J.</au><au>Hamelers, Hubertus V.M.</au><au>van Straten, Gerrit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic models for detection of toxicity in a microbial fuel cell based biosensor</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2011-03-15</date><risdate>2011</risdate><volume>26</volume><issue>7</issue><spage>3115</spage><epage>3120</epage><pages>3115-3120</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to describe four types of toxicity. To get a stable and sensitive sensor, the overpotential has to be controlled. Simulations with the four modified models were performed to predict the overpotential that gives the most sensitive sensor. These simulations were based on data and parameter values from experimental results under non-toxic conditions. Given the parameter values from experimental results, controlling the overpotential at 250 mV leads to a sensor that is most sensitive to components that influence the whole bacterial metabolism or that influence the substrate affinity constant ( Km). Controlling the overpotential at 105 mV is the most sensitive setting for components influencing the ratio of biochemical over electrochemical reaction rate constants ( K1), while an overpotential of 76 mV gives the most sensitive setting for components that influence the ratio of the forward over backward biochemical rate constants ( K2). The sensitivity of the biosensor was also analyzed for robustness against changes in the model parameters other than toxicity. As an example, the tradeoff between sensitivity and robustness for the model describing changes on K1 (I K1) is presented. The biosensor is sensitive for toxic components and robust for changes in model parameter K2 when overpotential is controlled between 118 and 140 mV under the simulated conditions.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21216586</pmid><doi>10.1016/j.bios.2010.11.049</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2011-03, Vol.26 (7), p.3115-3120
issn 0956-5663
1873-4235
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_409645
source ScienceDirect Freedom Collection
subjects Bacteria
Biochemical fuel cells
Bioelectric Energy Sources - microbiology
biofilm anode
Biological and medical sciences
Biosensing Techniques - instrumentation
Biosensor
Biosensors
Biotechnology
Computer Simulation
Fundamental and applied biological sciences. Psychology
Kinetics
Mathematical models
Methods. Procedures. Technologies
Microbial fuel cell
Microorganisms
Models, Biological
Overpotential
Polarization
Rate constants
Sensitivity
Sensors
system
Toxicity
Various methods and equipments
Water Pollutants, Chemical - analysis
title Kinetic models for detection of toxicity in a microbial fuel cell based biosensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20models%20for%20detection%20of%20toxicity%20in%20a%20microbial%20fuel%20cell%20based%20biosensor&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Stein,%20Nienke%20E.&rft.date=2011-03-15&rft.volume=26&rft.issue=7&rft.spage=3115&rft.epage=3120&rft.pages=3115-3120&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2010.11.049&rft_dat=%3Cproquest_wagen%3E864963164%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864963164&rft_id=info:pmid/21216586&rfr_iscdi=true