Loading…
Kinetic models for detection of toxicity in a microbial fuel cell based biosensor
Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to d...
Saved in:
Published in: | Biosensors & bioelectronics 2011-03, Vol.26 (7), p.3115-3120 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33 |
container_end_page | 3120 |
container_issue | 7 |
container_start_page | 3115 |
container_title | Biosensors & bioelectronics |
container_volume | 26 |
creator | Stein, Nienke E. Keesman, Karel J. Hamelers, Hubertus V.M. van Straten, Gerrit |
description | Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to describe four types of toxicity. To get a stable and sensitive sensor, the overpotential has to be controlled. Simulations with the four modified models were performed to predict the overpotential that gives the most sensitive sensor. These simulations were based on data and parameter values from experimental results under non-toxic conditions. Given the parameter values from experimental results, controlling the overpotential at 250
mV leads to a sensor that is most sensitive to components that influence the whole bacterial metabolism or that influence the substrate affinity constant (
Km). Controlling the overpotential at 105
mV is the most sensitive setting for components influencing the ratio of biochemical over electrochemical reaction rate constants (
K1), while an overpotential of 76
mV gives the most sensitive setting for components that influence the ratio of the forward over backward biochemical rate constants (
K2).
The sensitivity of the biosensor was also analyzed for robustness against changes in the model parameters other than toxicity. As an example, the tradeoff between sensitivity and robustness for the model describing changes on
K1 (I
K1) is presented. The biosensor is sensitive for toxic components and robust for changes in model parameter
K2 when overpotential is controlled between 118 and 140
mV under the simulated conditions. |
doi_str_mv | 10.1016/j.bios.2010.11.049 |
format | article |
fullrecord | <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_409645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566310008158</els_id><sourcerecordid>864963164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMo7jj6BTxILuKpxySdTnfEiyz-wwUR9BzSSUVq6E7GpNt1v71pZtyjlxSE9x716kfIc84OnHH1-ngYMZWDYNsHPzCpH5AdH_q2kaLtHpId051qOqXaK_KklCNjrOeaPSZXgguuukHtyLcvGGFBR-fkYSo0pEw9LOAWTJGmQJf0Bx0udxQjtXRGl9OIdqJhhYk6mCY62gKebqtALCk_JY-CnQo8u8w9-fHh_ffrT83N14-fr9_dNE6qYWkCcNt34Frdc9YPwMWgvBPSC4BBgPDcOsvlEOwImnHJeghCeObb3mod2nZP3pxzb-1PiBjrY6LNDotJFs2EY7b5ztyu2cRpG6d1LEYyrWRXza_O5lNOv1Yoi5mxbG1shLQWMyipVcuVrEpxVtbipWQI5pRx3pI5MxsGczRbd7NhMJybiqGaXlzi13EGf2_5d_cqeHkR2OLsFLKN2-L3ulYL0VWKe_L2rKts4DdCNsUhRAcec2VkfML_7fEXdlin0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864963164</pqid></control><display><type>article</type><title>Kinetic models for detection of toxicity in a microbial fuel cell based biosensor</title><source>ScienceDirect Freedom Collection</source><creator>Stein, Nienke E. ; Keesman, Karel J. ; Hamelers, Hubertus V.M. ; van Straten, Gerrit</creator><creatorcontrib>Stein, Nienke E. ; Keesman, Karel J. ; Hamelers, Hubertus V.M. ; van Straten, Gerrit</creatorcontrib><description>Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to describe four types of toxicity. To get a stable and sensitive sensor, the overpotential has to be controlled. Simulations with the four modified models were performed to predict the overpotential that gives the most sensitive sensor. These simulations were based on data and parameter values from experimental results under non-toxic conditions. Given the parameter values from experimental results, controlling the overpotential at 250
mV leads to a sensor that is most sensitive to components that influence the whole bacterial metabolism or that influence the substrate affinity constant (
Km). Controlling the overpotential at 105
mV is the most sensitive setting for components influencing the ratio of biochemical over electrochemical reaction rate constants (
K1), while an overpotential of 76
mV gives the most sensitive setting for components that influence the ratio of the forward over backward biochemical rate constants (
K2).
The sensitivity of the biosensor was also analyzed for robustness against changes in the model parameters other than toxicity. As an example, the tradeoff between sensitivity and robustness for the model describing changes on
K1 (I
K1) is presented. The biosensor is sensitive for toxic components and robust for changes in model parameter
K2 when overpotential is controlled between 118 and 140
mV under the simulated conditions.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2010.11.049</identifier><identifier>PMID: 21216586</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Bacteria ; Biochemical fuel cells ; Bioelectric Energy Sources - microbiology ; biofilm anode ; Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biosensor ; Biosensors ; Biotechnology ; Computer Simulation ; Fundamental and applied biological sciences. Psychology ; Kinetics ; Mathematical models ; Methods. Procedures. Technologies ; Microbial fuel cell ; Microorganisms ; Models, Biological ; Overpotential ; Polarization ; Rate constants ; Sensitivity ; Sensors ; system ; Toxicity ; Various methods and equipments ; Water Pollutants, Chemical - analysis</subject><ispartof>Biosensors & bioelectronics, 2011-03, Vol.26 (7), p.3115-3120</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33</citedby><cites>FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23922542$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21216586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stein, Nienke E.</creatorcontrib><creatorcontrib>Keesman, Karel J.</creatorcontrib><creatorcontrib>Hamelers, Hubertus V.M.</creatorcontrib><creatorcontrib>van Straten, Gerrit</creatorcontrib><title>Kinetic models for detection of toxicity in a microbial fuel cell based biosensor</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to describe four types of toxicity. To get a stable and sensitive sensor, the overpotential has to be controlled. Simulations with the four modified models were performed to predict the overpotential that gives the most sensitive sensor. These simulations were based on data and parameter values from experimental results under non-toxic conditions. Given the parameter values from experimental results, controlling the overpotential at 250
mV leads to a sensor that is most sensitive to components that influence the whole bacterial metabolism or that influence the substrate affinity constant (
Km). Controlling the overpotential at 105
mV is the most sensitive setting for components influencing the ratio of biochemical over electrochemical reaction rate constants (
K1), while an overpotential of 76
mV gives the most sensitive setting for components that influence the ratio of the forward over backward biochemical rate constants (
K2).
The sensitivity of the biosensor was also analyzed for robustness against changes in the model parameters other than toxicity. As an example, the tradeoff between sensitivity and robustness for the model describing changes on
K1 (I
K1) is presented. The biosensor is sensitive for toxic components and robust for changes in model parameter
K2 when overpotential is controlled between 118 and 140
mV under the simulated conditions.</description><subject>Bacteria</subject><subject>Biochemical fuel cells</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>biofilm anode</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensor</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Computer Simulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial fuel cell</subject><subject>Microorganisms</subject><subject>Models, Biological</subject><subject>Overpotential</subject><subject>Polarization</subject><subject>Rate constants</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>system</subject><subject>Toxicity</subject><subject>Various methods and equipments</subject><subject>Water Pollutants, Chemical - analysis</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU-LFDEQxYMo7jj6BTxILuKpxySdTnfEiyz-wwUR9BzSSUVq6E7GpNt1v71pZtyjlxSE9x716kfIc84OnHH1-ngYMZWDYNsHPzCpH5AdH_q2kaLtHpId051qOqXaK_KklCNjrOeaPSZXgguuukHtyLcvGGFBR-fkYSo0pEw9LOAWTJGmQJf0Bx0udxQjtXRGl9OIdqJhhYk6mCY62gKebqtALCk_JY-CnQo8u8w9-fHh_ffrT83N14-fr9_dNE6qYWkCcNt34Frdc9YPwMWgvBPSC4BBgPDcOsvlEOwImnHJeghCeObb3mod2nZP3pxzb-1PiBjrY6LNDotJFs2EY7b5ztyu2cRpG6d1LEYyrWRXza_O5lNOv1Yoi5mxbG1shLQWMyipVcuVrEpxVtbipWQI5pRx3pI5MxsGczRbd7NhMJybiqGaXlzi13EGf2_5d_cqeHkR2OLsFLKN2-L3ulYL0VWKe_L2rKts4DdCNsUhRAcec2VkfML_7fEXdlin0w</recordid><startdate>20110315</startdate><enddate>20110315</enddate><creator>Stein, Nienke E.</creator><creator>Keesman, Karel J.</creator><creator>Hamelers, Hubertus V.M.</creator><creator>van Straten, Gerrit</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>QVL</scope></search><sort><creationdate>20110315</creationdate><title>Kinetic models for detection of toxicity in a microbial fuel cell based biosensor</title><author>Stein, Nienke E. ; Keesman, Karel J. ; Hamelers, Hubertus V.M. ; van Straten, Gerrit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bacteria</topic><topic>Biochemical fuel cells</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>biofilm anode</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensor</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Computer Simulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial fuel cell</topic><topic>Microorganisms</topic><topic>Models, Biological</topic><topic>Overpotential</topic><topic>Polarization</topic><topic>Rate constants</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>system</topic><topic>Toxicity</topic><topic>Various methods and equipments</topic><topic>Water Pollutants, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, Nienke E.</creatorcontrib><creatorcontrib>Keesman, Karel J.</creatorcontrib><creatorcontrib>Hamelers, Hubertus V.M.</creatorcontrib><creatorcontrib>van Straten, Gerrit</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>NARCIS:Publications</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stein, Nienke E.</au><au>Keesman, Karel J.</au><au>Hamelers, Hubertus V.M.</au><au>van Straten, Gerrit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic models for detection of toxicity in a microbial fuel cell based biosensor</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2011-03-15</date><risdate>2011</risdate><volume>26</volume><issue>7</issue><spage>3115</spage><epage>3120</epage><pages>3115-3120</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Currently available models describing microbial fuel cell (MFC) polarization curves, do not describe the effect of the presence of toxic components. A bioelectrochemical model combined with enzyme inhibition kinetics, that describes the polarization curve of an MFC-based biosensor, was modified to describe four types of toxicity. To get a stable and sensitive sensor, the overpotential has to be controlled. Simulations with the four modified models were performed to predict the overpotential that gives the most sensitive sensor. These simulations were based on data and parameter values from experimental results under non-toxic conditions. Given the parameter values from experimental results, controlling the overpotential at 250
mV leads to a sensor that is most sensitive to components that influence the whole bacterial metabolism or that influence the substrate affinity constant (
Km). Controlling the overpotential at 105
mV is the most sensitive setting for components influencing the ratio of biochemical over electrochemical reaction rate constants (
K1), while an overpotential of 76
mV gives the most sensitive setting for components that influence the ratio of the forward over backward biochemical rate constants (
K2).
The sensitivity of the biosensor was also analyzed for robustness against changes in the model parameters other than toxicity. As an example, the tradeoff between sensitivity and robustness for the model describing changes on
K1 (I
K1) is presented. The biosensor is sensitive for toxic components and robust for changes in model parameter
K2 when overpotential is controlled between 118 and 140
mV under the simulated conditions.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>21216586</pmid><doi>10.1016/j.bios.2010.11.049</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2011-03, Vol.26 (7), p.3115-3120 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_409645 |
source | ScienceDirect Freedom Collection |
subjects | Bacteria Biochemical fuel cells Bioelectric Energy Sources - microbiology biofilm anode Biological and medical sciences Biosensing Techniques - instrumentation Biosensor Biosensors Biotechnology Computer Simulation Fundamental and applied biological sciences. Psychology Kinetics Mathematical models Methods. Procedures. Technologies Microbial fuel cell Microorganisms Models, Biological Overpotential Polarization Rate constants Sensitivity Sensors system Toxicity Various methods and equipments Water Pollutants, Chemical - analysis |
title | Kinetic models for detection of toxicity in a microbial fuel cell based biosensor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20models%20for%20detection%20of%20toxicity%20in%20a%20microbial%20fuel%20cell%20based%20biosensor&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Stein,%20Nienke%20E.&rft.date=2011-03-15&rft.volume=26&rft.issue=7&rft.spage=3115&rft.epage=3120&rft.pages=3115-3120&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2010.11.049&rft_dat=%3Cproquest_wagen%3E864963164%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-fe1a75ec3971078e1286dc24d2ee82e2d1aca148fabe901407ef22d0d37a99f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=864963164&rft_id=info:pmid/21216586&rfr_iscdi=true |