Loading…

Relative Greenness Index for assessing curing of grassland fuel

Knowledge of the proportion of live and dead herbaceous fuel in grasslands is important in determining fire danger. This paper examines the Relative Greenness approach for quantifying these live and dead proportions. Relative Greenness places the Normalized Difference Vegetation Index ( NDVI) in the...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2011-06, Vol.115 (6), p.1456-1463
Main Authors: Newnham, Glenn J., Verbesselt, Jan, Grant, Ian F., Anderson, Stuart A.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3
cites cdi_FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3
container_end_page 1463
container_issue 6
container_start_page 1456
container_title Remote sensing of environment
container_volume 115
creator Newnham, Glenn J.
Verbesselt, Jan
Grant, Ian F.
Anderson, Stuart A.J.
description Knowledge of the proportion of live and dead herbaceous fuel in grasslands is important in determining fire danger. This paper examines the Relative Greenness approach for quantifying these live and dead proportions. Relative Greenness places the Normalized Difference Vegetation Index ( NDVI) in the context of a time series of measurements. The parameters used to describe the temporal distribution of NDVI and the time interval over which this distribution is assessed impact Relative Greenness and the inferred characteristics of the vegetation. In this paper, the Relative Greenness approach was investigated using different NDVI distribution parameters derived from eight-day composites of surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We assessed the accuracy of Relative Greenness for predicting the degree of curing (equivalent to the dead proportion of herbaceous fuel) measured at 25 grassland sites in Australia from 2005 to 2009. Results showed that Relative Greenness explained a greater proportion of the variance and provided a more accurate estimate of the degree of curing than linear regression against NDVI. Relative Greenness was further improved using alternative parameters of the NDVI distribution and by selecting an appropriate time interval over which this distribution was assessed. ► Uses Relative Greenness to predict curing at 25 Australian grassland sites. ► The index was shown to be more accurate than NDVI regression. ► Sensitivity to the length of the time series was investigated. ► Greater than 1.7 years of data was required to improve on NDVI regression. ► The lowest error was achieved using a time series of 6.5 year.
doi_str_mv 10.1016/j.rse.2011.02.005
format article
fullrecord <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_425360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425711000484</els_id><sourcerecordid>1777133406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3</originalsourceid><addsrcrecordid>eNp9kc1r3DAQxUVJoZu0f0BvvpT2Ynf0YY3dHkoI-YJAobRnIcujRYsjb6V1kv73ldnkmtOD4fdG8_QY-8ih4cD1112TMjUCOG9ANADtG7bhHfY1IKgTtgGQqlaixXfsNOcdAG875Bv24xdN9hAeqLpORDFSztVtHOmp8nOqbM5lEOK2cktaZfbVNpXpZONY-YWm9-ytt1OmD896xv5cXf6-uKnvfl7fXpzf1U4peai7sXfWdUq3ohOjQ9W1siUFA2qHgxfE-3EU3qFWHgelWq8Hp8n1coDO6kGesW_HvY92S7GcQtFEm1zIZrbBTGFINv0zj0sycVplvwzZlMBSQzF_Ppr3af67UD6Y-5AdTSUFzUs2nUZUArkq5JdXSY6IXEoFuqD8iLo055zIm30K9-sRHMzaidmZ0olZOzEgTOmkeD49r7fZ2cknG9cEL0ahACXqvnDfjxyVL30IlEx2gaKjMSRyBzPO4ZVX_gN2laJd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777133406</pqid></control><display><type>article</type><title>Relative Greenness Index for assessing curing of grassland fuel</title><source>ScienceDirect Journals</source><creator>Newnham, Glenn J. ; Verbesselt, Jan ; Grant, Ian F. ; Anderson, Stuart A.J.</creator><creatorcontrib>Newnham, Glenn J. ; Verbesselt, Jan ; Grant, Ian F. ; Anderson, Stuart A.J.</creatorcontrib><description>Knowledge of the proportion of live and dead herbaceous fuel in grasslands is important in determining fire danger. This paper examines the Relative Greenness approach for quantifying these live and dead proportions. Relative Greenness places the Normalized Difference Vegetation Index ( NDVI) in the context of a time series of measurements. The parameters used to describe the temporal distribution of NDVI and the time interval over which this distribution is assessed impact Relative Greenness and the inferred characteristics of the vegetation. In this paper, the Relative Greenness approach was investigated using different NDVI distribution parameters derived from eight-day composites of surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We assessed the accuracy of Relative Greenness for predicting the degree of curing (equivalent to the dead proportion of herbaceous fuel) measured at 25 grassland sites in Australia from 2005 to 2009. Results showed that Relative Greenness explained a greater proportion of the variance and provided a more accurate estimate of the degree of curing than linear regression against NDVI. Relative Greenness was further improved using alternative parameters of the NDVI distribution and by selecting an appropriate time interval over which this distribution was assessed. ► Uses Relative Greenness to predict curing at 25 Australian grassland sites. ► The index was shown to be more accurate than NDVI regression. ► Sensitivity to the length of the time series was investigated. ► Greater than 1.7 years of data was required to improve on NDVI regression. ► The lowest error was achieved using a time series of 6.5 year.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2011.02.005</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; australia ; avhrr data ; bidirectional reflectance ; Biological and medical sciences ; Cover fractions ; Curing ; derivation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; fire ; Fire danger ; Fuel moisture ; Fuels ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Grassland ; Grasslands ; Imaging ; Internal geophysics ; Intervals ; MODIS ; modis data ; moisture ; NDVI ; ndvi time-series ; Regression ; Spectroradiometers ; Teledetection and vegetation maps ; Time series ; Vegetation ; vegetation index</subject><ispartof>Remote sensing of environment, 2011-06, Vol.115 (6), p.1456-1463</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3</citedby><cites>FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24073769$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Newnham, Glenn J.</creatorcontrib><creatorcontrib>Verbesselt, Jan</creatorcontrib><creatorcontrib>Grant, Ian F.</creatorcontrib><creatorcontrib>Anderson, Stuart A.J.</creatorcontrib><title>Relative Greenness Index for assessing curing of grassland fuel</title><title>Remote sensing of environment</title><description>Knowledge of the proportion of live and dead herbaceous fuel in grasslands is important in determining fire danger. This paper examines the Relative Greenness approach for quantifying these live and dead proportions. Relative Greenness places the Normalized Difference Vegetation Index ( NDVI) in the context of a time series of measurements. The parameters used to describe the temporal distribution of NDVI and the time interval over which this distribution is assessed impact Relative Greenness and the inferred characteristics of the vegetation. In this paper, the Relative Greenness approach was investigated using different NDVI distribution parameters derived from eight-day composites of surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We assessed the accuracy of Relative Greenness for predicting the degree of curing (equivalent to the dead proportion of herbaceous fuel) measured at 25 grassland sites in Australia from 2005 to 2009. Results showed that Relative Greenness explained a greater proportion of the variance and provided a more accurate estimate of the degree of curing than linear regression against NDVI. Relative Greenness was further improved using alternative parameters of the NDVI distribution and by selecting an appropriate time interval over which this distribution was assessed. ► Uses Relative Greenness to predict curing at 25 Australian grassland sites. ► The index was shown to be more accurate than NDVI regression. ► Sensitivity to the length of the time series was investigated. ► Greater than 1.7 years of data was required to improve on NDVI regression. ► The lowest error was achieved using a time series of 6.5 year.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>australia</subject><subject>avhrr data</subject><subject>bidirectional reflectance</subject><subject>Biological and medical sciences</subject><subject>Cover fractions</subject><subject>Curing</subject><subject>derivation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>fire</subject><subject>Fire danger</subject><subject>Fuel moisture</subject><subject>Fuels</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Grassland</subject><subject>Grasslands</subject><subject>Imaging</subject><subject>Internal geophysics</subject><subject>Intervals</subject><subject>MODIS</subject><subject>modis data</subject><subject>moisture</subject><subject>NDVI</subject><subject>ndvi time-series</subject><subject>Regression</subject><subject>Spectroradiometers</subject><subject>Teledetection and vegetation maps</subject><subject>Time series</subject><subject>Vegetation</subject><subject>vegetation index</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kc1r3DAQxUVJoZu0f0BvvpT2Ynf0YY3dHkoI-YJAobRnIcujRYsjb6V1kv73ldnkmtOD4fdG8_QY-8ih4cD1112TMjUCOG9ANADtG7bhHfY1IKgTtgGQqlaixXfsNOcdAG875Bv24xdN9hAeqLpORDFSztVtHOmp8nOqbM5lEOK2cktaZfbVNpXpZONY-YWm9-ytt1OmD896xv5cXf6-uKnvfl7fXpzf1U4peai7sXfWdUq3ohOjQ9W1siUFA2qHgxfE-3EU3qFWHgelWq8Hp8n1coDO6kGesW_HvY92S7GcQtFEm1zIZrbBTGFINv0zj0sycVplvwzZlMBSQzF_Ppr3af67UD6Y-5AdTSUFzUs2nUZUArkq5JdXSY6IXEoFuqD8iLo055zIm30K9-sRHMzaidmZ0olZOzEgTOmkeD49r7fZ2cknG9cEL0ahACXqvnDfjxyVL30IlEx2gaKjMSRyBzPO4ZVX_gN2laJd</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Newnham, Glenn J.</creator><creator>Verbesselt, Jan</creator><creator>Grant, Ian F.</creator><creator>Anderson, Stuart A.J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope><scope>QVL</scope></search><sort><creationdate>20110615</creationdate><title>Relative Greenness Index for assessing curing of grassland fuel</title><author>Newnham, Glenn J. ; Verbesselt, Jan ; Grant, Ian F. ; Anderson, Stuart A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>australia</topic><topic>avhrr data</topic><topic>bidirectional reflectance</topic><topic>Biological and medical sciences</topic><topic>Cover fractions</topic><topic>Curing</topic><topic>derivation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>fire</topic><topic>Fire danger</topic><topic>Fuel moisture</topic><topic>Fuels</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Grassland</topic><topic>Grasslands</topic><topic>Imaging</topic><topic>Internal geophysics</topic><topic>Intervals</topic><topic>MODIS</topic><topic>modis data</topic><topic>moisture</topic><topic>NDVI</topic><topic>ndvi time-series</topic><topic>Regression</topic><topic>Spectroradiometers</topic><topic>Teledetection and vegetation maps</topic><topic>Time series</topic><topic>Vegetation</topic><topic>vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newnham, Glenn J.</creatorcontrib><creatorcontrib>Verbesselt, Jan</creatorcontrib><creatorcontrib>Grant, Ian F.</creatorcontrib><creatorcontrib>Anderson, Stuart A.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><collection>NARCIS:Publications</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newnham, Glenn J.</au><au>Verbesselt, Jan</au><au>Grant, Ian F.</au><au>Anderson, Stuart A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative Greenness Index for assessing curing of grassland fuel</atitle><jtitle>Remote sensing of environment</jtitle><date>2011-06-15</date><risdate>2011</risdate><volume>115</volume><issue>6</issue><spage>1456</spage><epage>1463</epage><pages>1456-1463</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>Knowledge of the proportion of live and dead herbaceous fuel in grasslands is important in determining fire danger. This paper examines the Relative Greenness approach for quantifying these live and dead proportions. Relative Greenness places the Normalized Difference Vegetation Index ( NDVI) in the context of a time series of measurements. The parameters used to describe the temporal distribution of NDVI and the time interval over which this distribution is assessed impact Relative Greenness and the inferred characteristics of the vegetation. In this paper, the Relative Greenness approach was investigated using different NDVI distribution parameters derived from eight-day composites of surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We assessed the accuracy of Relative Greenness for predicting the degree of curing (equivalent to the dead proportion of herbaceous fuel) measured at 25 grassland sites in Australia from 2005 to 2009. Results showed that Relative Greenness explained a greater proportion of the variance and provided a more accurate estimate of the degree of curing than linear regression against NDVI. Relative Greenness was further improved using alternative parameters of the NDVI distribution and by selecting an appropriate time interval over which this distribution was assessed. ► Uses Relative Greenness to predict curing at 25 Australian grassland sites. ► The index was shown to be more accurate than NDVI regression. ► Sensitivity to the length of the time series was investigated. ► Greater than 1.7 years of data was required to improve on NDVI regression. ► The lowest error was achieved using a time series of 6.5 year.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2011.02.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2011-06, Vol.115 (6), p.1456-1463
issn 0034-4257
1879-0704
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_425360
source ScienceDirect Journals
subjects Animal, plant and microbial ecology
Applied geophysics
australia
avhrr data
bidirectional reflectance
Biological and medical sciences
Cover fractions
Curing
derivation
Earth sciences
Earth, ocean, space
Exact sciences and technology
fire
Fire danger
Fuel moisture
Fuels
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Grassland
Grasslands
Imaging
Internal geophysics
Intervals
MODIS
modis data
moisture
NDVI
ndvi time-series
Regression
Spectroradiometers
Teledetection and vegetation maps
Time series
Vegetation
vegetation index
title Relative Greenness Index for assessing curing of grassland fuel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20Greenness%20Index%20for%20assessing%20curing%20of%20grassland%20fuel&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Newnham,%20Glenn%20J.&rft.date=2011-06-15&rft.volume=115&rft.issue=6&rft.spage=1456&rft.epage=1463&rft.pages=1456-1463&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/j.rse.2011.02.005&rft_dat=%3Cproquest_wagen%3E1777133406%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777133406&rft_id=info:pmid/&rfr_iscdi=true