Loading…
Relative Greenness Index for assessing curing of grassland fuel
Knowledge of the proportion of live and dead herbaceous fuel in grasslands is important in determining fire danger. This paper examines the Relative Greenness approach for quantifying these live and dead proportions. Relative Greenness places the Normalized Difference Vegetation Index ( NDVI) in the...
Saved in:
Published in: | Remote sensing of environment 2011-06, Vol.115 (6), p.1456-1463 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3 |
container_end_page | 1463 |
container_issue | 6 |
container_start_page | 1456 |
container_title | Remote sensing of environment |
container_volume | 115 |
creator | Newnham, Glenn J. Verbesselt, Jan Grant, Ian F. Anderson, Stuart A.J. |
description | Knowledge of the proportion of live and dead herbaceous fuel in grasslands is important in determining fire danger. This paper examines the Relative Greenness approach for quantifying these live and dead proportions. Relative Greenness places the Normalized Difference Vegetation Index (
NDVI) in the context of a time series of measurements. The parameters used to describe the temporal distribution of
NDVI and the time interval over which this distribution is assessed impact Relative Greenness and the inferred characteristics of the vegetation. In this paper, the Relative Greenness approach was investigated using different
NDVI distribution parameters derived from eight-day composites of surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We assessed the accuracy of Relative Greenness for predicting the degree of curing (equivalent to the dead proportion of herbaceous fuel) measured at 25 grassland sites in Australia from 2005 to 2009. Results showed that Relative Greenness explained a greater proportion of the variance and provided a more accurate estimate of the degree of curing than linear regression against
NDVI. Relative Greenness was further improved using alternative parameters of the
NDVI distribution and by selecting an appropriate time interval over which this distribution was assessed.
► Uses Relative Greenness to predict curing at 25 Australian grassland sites. ► The index was shown to be more accurate than NDVI regression. ► Sensitivity to the length of the time series was investigated. ► Greater than 1.7 years of data was required to improve on NDVI regression. ► The lowest error was achieved using a time series of 6.5 year. |
doi_str_mv | 10.1016/j.rse.2011.02.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_425360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425711000484</els_id><sourcerecordid>1777133406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3</originalsourceid><addsrcrecordid>eNp9kc1r3DAQxUVJoZu0f0BvvpT2Ynf0YY3dHkoI-YJAobRnIcujRYsjb6V1kv73ldnkmtOD4fdG8_QY-8ih4cD1112TMjUCOG9ANADtG7bhHfY1IKgTtgGQqlaixXfsNOcdAG875Bv24xdN9hAeqLpORDFSztVtHOmp8nOqbM5lEOK2cktaZfbVNpXpZONY-YWm9-ytt1OmD896xv5cXf6-uKnvfl7fXpzf1U4peai7sXfWdUq3ohOjQ9W1siUFA2qHgxfE-3EU3qFWHgelWq8Hp8n1coDO6kGesW_HvY92S7GcQtFEm1zIZrbBTGFINv0zj0sycVplvwzZlMBSQzF_Ppr3af67UD6Y-5AdTSUFzUs2nUZUArkq5JdXSY6IXEoFuqD8iLo055zIm30K9-sRHMzaidmZ0olZOzEgTOmkeD49r7fZ2cknG9cEL0ahACXqvnDfjxyVL30IlEx2gaKjMSRyBzPO4ZVX_gN2laJd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777133406</pqid></control><display><type>article</type><title>Relative Greenness Index for assessing curing of grassland fuel</title><source>ScienceDirect Journals</source><creator>Newnham, Glenn J. ; Verbesselt, Jan ; Grant, Ian F. ; Anderson, Stuart A.J.</creator><creatorcontrib>Newnham, Glenn J. ; Verbesselt, Jan ; Grant, Ian F. ; Anderson, Stuart A.J.</creatorcontrib><description>Knowledge of the proportion of live and dead herbaceous fuel in grasslands is important in determining fire danger. This paper examines the Relative Greenness approach for quantifying these live and dead proportions. Relative Greenness places the Normalized Difference Vegetation Index (
NDVI) in the context of a time series of measurements. The parameters used to describe the temporal distribution of
NDVI and the time interval over which this distribution is assessed impact Relative Greenness and the inferred characteristics of the vegetation. In this paper, the Relative Greenness approach was investigated using different
NDVI distribution parameters derived from eight-day composites of surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We assessed the accuracy of Relative Greenness for predicting the degree of curing (equivalent to the dead proportion of herbaceous fuel) measured at 25 grassland sites in Australia from 2005 to 2009. Results showed that Relative Greenness explained a greater proportion of the variance and provided a more accurate estimate of the degree of curing than linear regression against
NDVI. Relative Greenness was further improved using alternative parameters of the
NDVI distribution and by selecting an appropriate time interval over which this distribution was assessed.
► Uses Relative Greenness to predict curing at 25 Australian grassland sites. ► The index was shown to be more accurate than NDVI regression. ► Sensitivity to the length of the time series was investigated. ► Greater than 1.7 years of data was required to improve on NDVI regression. ► The lowest error was achieved using a time series of 6.5 year.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2011.02.005</identifier><identifier>CODEN: RSEEA7</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Animal, plant and microbial ecology ; Applied geophysics ; australia ; avhrr data ; bidirectional reflectance ; Biological and medical sciences ; Cover fractions ; Curing ; derivation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; fire ; Fire danger ; Fuel moisture ; Fuels ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Grassland ; Grasslands ; Imaging ; Internal geophysics ; Intervals ; MODIS ; modis data ; moisture ; NDVI ; ndvi time-series ; Regression ; Spectroradiometers ; Teledetection and vegetation maps ; Time series ; Vegetation ; vegetation index</subject><ispartof>Remote sensing of environment, 2011-06, Vol.115 (6), p.1456-1463</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3</citedby><cites>FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24073769$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Newnham, Glenn J.</creatorcontrib><creatorcontrib>Verbesselt, Jan</creatorcontrib><creatorcontrib>Grant, Ian F.</creatorcontrib><creatorcontrib>Anderson, Stuart A.J.</creatorcontrib><title>Relative Greenness Index for assessing curing of grassland fuel</title><title>Remote sensing of environment</title><description>Knowledge of the proportion of live and dead herbaceous fuel in grasslands is important in determining fire danger. This paper examines the Relative Greenness approach for quantifying these live and dead proportions. Relative Greenness places the Normalized Difference Vegetation Index (
NDVI) in the context of a time series of measurements. The parameters used to describe the temporal distribution of
NDVI and the time interval over which this distribution is assessed impact Relative Greenness and the inferred characteristics of the vegetation. In this paper, the Relative Greenness approach was investigated using different
NDVI distribution parameters derived from eight-day composites of surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We assessed the accuracy of Relative Greenness for predicting the degree of curing (equivalent to the dead proportion of herbaceous fuel) measured at 25 grassland sites in Australia from 2005 to 2009. Results showed that Relative Greenness explained a greater proportion of the variance and provided a more accurate estimate of the degree of curing than linear regression against
NDVI. Relative Greenness was further improved using alternative parameters of the
NDVI distribution and by selecting an appropriate time interval over which this distribution was assessed.
► Uses Relative Greenness to predict curing at 25 Australian grassland sites. ► The index was shown to be more accurate than NDVI regression. ► Sensitivity to the length of the time series was investigated. ► Greater than 1.7 years of data was required to improve on NDVI regression. ► The lowest error was achieved using a time series of 6.5 year.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>australia</subject><subject>avhrr data</subject><subject>bidirectional reflectance</subject><subject>Biological and medical sciences</subject><subject>Cover fractions</subject><subject>Curing</subject><subject>derivation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>fire</subject><subject>Fire danger</subject><subject>Fuel moisture</subject><subject>Fuels</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Grassland</subject><subject>Grasslands</subject><subject>Imaging</subject><subject>Internal geophysics</subject><subject>Intervals</subject><subject>MODIS</subject><subject>modis data</subject><subject>moisture</subject><subject>NDVI</subject><subject>ndvi time-series</subject><subject>Regression</subject><subject>Spectroradiometers</subject><subject>Teledetection and vegetation maps</subject><subject>Time series</subject><subject>Vegetation</subject><subject>vegetation index</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kc1r3DAQxUVJoZu0f0BvvpT2Ynf0YY3dHkoI-YJAobRnIcujRYsjb6V1kv73ldnkmtOD4fdG8_QY-8ih4cD1112TMjUCOG9ANADtG7bhHfY1IKgTtgGQqlaixXfsNOcdAG875Bv24xdN9hAeqLpORDFSztVtHOmp8nOqbM5lEOK2cktaZfbVNpXpZONY-YWm9-ytt1OmD896xv5cXf6-uKnvfl7fXpzf1U4peai7sXfWdUq3ohOjQ9W1siUFA2qHgxfE-3EU3qFWHgelWq8Hp8n1coDO6kGesW_HvY92S7GcQtFEm1zIZrbBTGFINv0zj0sycVplvwzZlMBSQzF_Ppr3af67UD6Y-5AdTSUFzUs2nUZUArkq5JdXSY6IXEoFuqD8iLo055zIm30K9-sRHMzaidmZ0olZOzEgTOmkeD49r7fZ2cknG9cEL0ahACXqvnDfjxyVL30IlEx2gaKjMSRyBzPO4ZVX_gN2laJd</recordid><startdate>20110615</startdate><enddate>20110615</enddate><creator>Newnham, Glenn J.</creator><creator>Verbesselt, Jan</creator><creator>Grant, Ian F.</creator><creator>Anderson, Stuart A.J.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope><scope>QVL</scope></search><sort><creationdate>20110615</creationdate><title>Relative Greenness Index for assessing curing of grassland fuel</title><author>Newnham, Glenn J. ; Verbesselt, Jan ; Grant, Ian F. ; Anderson, Stuart A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>australia</topic><topic>avhrr data</topic><topic>bidirectional reflectance</topic><topic>Biological and medical sciences</topic><topic>Cover fractions</topic><topic>Curing</topic><topic>derivation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>fire</topic><topic>Fire danger</topic><topic>Fuel moisture</topic><topic>Fuels</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Grassland</topic><topic>Grasslands</topic><topic>Imaging</topic><topic>Internal geophysics</topic><topic>Intervals</topic><topic>MODIS</topic><topic>modis data</topic><topic>moisture</topic><topic>NDVI</topic><topic>ndvi time-series</topic><topic>Regression</topic><topic>Spectroradiometers</topic><topic>Teledetection and vegetation maps</topic><topic>Time series</topic><topic>Vegetation</topic><topic>vegetation index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newnham, Glenn J.</creatorcontrib><creatorcontrib>Verbesselt, Jan</creatorcontrib><creatorcontrib>Grant, Ian F.</creatorcontrib><creatorcontrib>Anderson, Stuart A.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><collection>NARCIS:Publications</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newnham, Glenn J.</au><au>Verbesselt, Jan</au><au>Grant, Ian F.</au><au>Anderson, Stuart A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative Greenness Index for assessing curing of grassland fuel</atitle><jtitle>Remote sensing of environment</jtitle><date>2011-06-15</date><risdate>2011</risdate><volume>115</volume><issue>6</issue><spage>1456</spage><epage>1463</epage><pages>1456-1463</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><coden>RSEEA7</coden><abstract>Knowledge of the proportion of live and dead herbaceous fuel in grasslands is important in determining fire danger. This paper examines the Relative Greenness approach for quantifying these live and dead proportions. Relative Greenness places the Normalized Difference Vegetation Index (
NDVI) in the context of a time series of measurements. The parameters used to describe the temporal distribution of
NDVI and the time interval over which this distribution is assessed impact Relative Greenness and the inferred characteristics of the vegetation. In this paper, the Relative Greenness approach was investigated using different
NDVI distribution parameters derived from eight-day composites of surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). We assessed the accuracy of Relative Greenness for predicting the degree of curing (equivalent to the dead proportion of herbaceous fuel) measured at 25 grassland sites in Australia from 2005 to 2009. Results showed that Relative Greenness explained a greater proportion of the variance and provided a more accurate estimate of the degree of curing than linear regression against
NDVI. Relative Greenness was further improved using alternative parameters of the
NDVI distribution and by selecting an appropriate time interval over which this distribution was assessed.
► Uses Relative Greenness to predict curing at 25 Australian grassland sites. ► The index was shown to be more accurate than NDVI regression. ► Sensitivity to the length of the time series was investigated. ► Greater than 1.7 years of data was required to improve on NDVI regression. ► The lowest error was achieved using a time series of 6.5 year.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2011.02.005</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2011-06, Vol.115 (6), p.1456-1463 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_425360 |
source | ScienceDirect Journals |
subjects | Animal, plant and microbial ecology Applied geophysics australia avhrr data bidirectional reflectance Biological and medical sciences Cover fractions Curing derivation Earth sciences Earth, ocean, space Exact sciences and technology fire Fire danger Fuel moisture Fuels Fundamental and applied biological sciences. Psychology General aspects. Techniques Grassland Grasslands Imaging Internal geophysics Intervals MODIS modis data moisture NDVI ndvi time-series Regression Spectroradiometers Teledetection and vegetation maps Time series Vegetation vegetation index |
title | Relative Greenness Index for assessing curing of grassland fuel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20Greenness%20Index%20for%20assessing%20curing%20of%20grassland%20fuel&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Newnham,%20Glenn%20J.&rft.date=2011-06-15&rft.volume=115&rft.issue=6&rft.spage=1456&rft.epage=1463&rft.pages=1456-1463&rft.issn=0034-4257&rft.eissn=1879-0704&rft.coden=RSEEA7&rft_id=info:doi/10.1016/j.rse.2011.02.005&rft_dat=%3Cproquest_wagen%3E1777133406%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-8d9cac8465282dc748535e40b76c7bf2e19dd2fc764f7b445f6bc6ec93b08a6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777133406&rft_id=info:pmid/&rfr_iscdi=true |