Loading…

SNP marker detection and genotyping in tilapia

We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology resources 2012-09, Vol.12 (5), p.932-941
Main Authors: Van BERS, N. E. M., CROOIJMANS, R. P. M. A., GROENEN, M. A. M., DIBBITS, B. W., KOMEN, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03
cites cdi_FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03
container_end_page 941
container_issue 5
container_start_page 932
container_title Molecular ecology resources
container_volume 12
creator Van BERS, N. E. M.
CROOIJMANS, R. P. M. A.
GROENEN, M. A. M.
DIBBITS, B. W.
KOMEN, J.
description We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288–305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei’s genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization.
doi_str_mv 10.1111/j.1755-0998.2012.03144.x
format article
fullrecord <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_432820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3278637711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0Eoh_wF1AkLlyS-iuJg8QBVaUtKlugfInLyHEmlZesE-xE3f33ON3tHjjVl7Hk9xmP5iEkYTRj8ZwsM1bmeUqrSmWcMp5RwaTM1k_I4f7h6f6ufh2QoxCWlBa0KuVzcsB5ziXL1SHJbhafk5X2f9AnDY5oRtu7RLsmuUXXj5vButvEumS0nR6sfkGetboL-HJXj8n3D2ffTi_Sq-vzy9P3V6nJWSVTThWjqkJm6rYqUStdFYxp1KVuRNtwVSuUNTValC3yWnGJskAt81YbU9RUHJO32753Os4RZ0AHTntjA_TaQmdrr_0G7iYPrpvLMNUBpOCKz_CbLTz4_u-EYYSVDQa7TjvspwCMClUwRdmjopJTXt5HX_8XXfaTd3ELwHJWxnVyJWNKbVPG9yF4bGHwdjXPyijM7mAJsxaYFcHsDu7dwTqir3YfTPUKmz34ICsG3u2WYjvcPLoxfDpbzLfIp1vehhHXez7Kh6IUZQ4_F-fw9cfvL5X8eANC_ANAwbZz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517415284</pqid></control><display><type>article</type><title>SNP marker detection and genotyping in tilapia</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Van BERS, N. E. M. ; CROOIJMANS, R. P. M. A. ; GROENEN, M. A. M. ; DIBBITS, B. W. ; KOMEN, J.</creator><creatorcontrib>Van BERS, N. E. M. ; CROOIJMANS, R. P. M. A. ; GROENEN, M. A. M. ; DIBBITS, B. W. ; KOMEN, J.</creatorcontrib><description>We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288–305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei’s genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization.</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/j.1755-0998.2012.03144.x</identifier><identifier>PMID: 22524158</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Aquaculture ; Brackish ; Cichlids - classification ; Cichlids - genetics ; farmed tilapias ; Fish ; Genetic diversity ; genetic-linkage map ; Genotype ; growth-performance ; lake victoria ; Molecular Typing - methods ; next generation sequencing ; NGS ; nile tilapia ; Oreochromis niloticus ; oreochromis-niloticus l ; Polymorphism, Single Nucleotide ; Ponds ; population genetics ; population-structure ; salmon oncorhynchus-nerka ; single-nucleotide polymorphisms ; SNP ; sockeye-salmon ; Tilapia</subject><ispartof>Molecular ecology resources, 2012-09, Vol.12 (5), p.932-941</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03</citedby><cites>FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22524158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van BERS, N. E. M.</creatorcontrib><creatorcontrib>CROOIJMANS, R. P. M. A.</creatorcontrib><creatorcontrib>GROENEN, M. A. M.</creatorcontrib><creatorcontrib>DIBBITS, B. W.</creatorcontrib><creatorcontrib>KOMEN, J.</creatorcontrib><title>SNP marker detection and genotyping in tilapia</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288–305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei’s genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization.</description><subject>Animals</subject><subject>Aquaculture</subject><subject>Brackish</subject><subject>Cichlids - classification</subject><subject>Cichlids - genetics</subject><subject>farmed tilapias</subject><subject>Fish</subject><subject>Genetic diversity</subject><subject>genetic-linkage map</subject><subject>Genotype</subject><subject>growth-performance</subject><subject>lake victoria</subject><subject>Molecular Typing - methods</subject><subject>next generation sequencing</subject><subject>NGS</subject><subject>nile tilapia</subject><subject>Oreochromis niloticus</subject><subject>oreochromis-niloticus l</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Ponds</subject><subject>population genetics</subject><subject>population-structure</subject><subject>salmon oncorhynchus-nerka</subject><subject>single-nucleotide polymorphisms</subject><subject>SNP</subject><subject>sockeye-salmon</subject><subject>Tilapia</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0Eoh_wF1AkLlyS-iuJg8QBVaUtKlugfInLyHEmlZesE-xE3f33ON3tHjjVl7Hk9xmP5iEkYTRj8ZwsM1bmeUqrSmWcMp5RwaTM1k_I4f7h6f6ufh2QoxCWlBa0KuVzcsB5ziXL1SHJbhafk5X2f9AnDY5oRtu7RLsmuUXXj5vButvEumS0nR6sfkGetboL-HJXj8n3D2ffTi_Sq-vzy9P3V6nJWSVTThWjqkJm6rYqUStdFYxp1KVuRNtwVSuUNTValC3yWnGJskAt81YbU9RUHJO32753Os4RZ0AHTntjA_TaQmdrr_0G7iYPrpvLMNUBpOCKz_CbLTz4_u-EYYSVDQa7TjvspwCMClUwRdmjopJTXt5HX_8XXfaTd3ELwHJWxnVyJWNKbVPG9yF4bGHwdjXPyijM7mAJsxaYFcHsDu7dwTqir3YfTPUKmz34ICsG3u2WYjvcPLoxfDpbzLfIp1vehhHXez7Kh6IUZQ4_F-fw9cfvL5X8eANC_ANAwbZz</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Van BERS, N. E. M.</creator><creator>CROOIJMANS, R. P. M. A.</creator><creator>GROENEN, M. A. M.</creator><creator>DIBBITS, B. W.</creator><creator>KOMEN, J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>QVL</scope></search><sort><creationdate>201209</creationdate><title>SNP marker detection and genotyping in tilapia</title><author>Van BERS, N. E. M. ; CROOIJMANS, R. P. M. A. ; GROENEN, M. A. M. ; DIBBITS, B. W. ; KOMEN, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Aquaculture</topic><topic>Brackish</topic><topic>Cichlids - classification</topic><topic>Cichlids - genetics</topic><topic>farmed tilapias</topic><topic>Fish</topic><topic>Genetic diversity</topic><topic>genetic-linkage map</topic><topic>Genotype</topic><topic>growth-performance</topic><topic>lake victoria</topic><topic>Molecular Typing - methods</topic><topic>next generation sequencing</topic><topic>NGS</topic><topic>nile tilapia</topic><topic>Oreochromis niloticus</topic><topic>oreochromis-niloticus l</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Ponds</topic><topic>population genetics</topic><topic>population-structure</topic><topic>salmon oncorhynchus-nerka</topic><topic>single-nucleotide polymorphisms</topic><topic>SNP</topic><topic>sockeye-salmon</topic><topic>Tilapia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van BERS, N. E. M.</creatorcontrib><creatorcontrib>CROOIJMANS, R. P. M. A.</creatorcontrib><creatorcontrib>GROENEN, M. A. M.</creatorcontrib><creatorcontrib>DIBBITS, B. W.</creatorcontrib><creatorcontrib>KOMEN, J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>NARCIS:Publications</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van BERS, N. E. M.</au><au>CROOIJMANS, R. P. M. A.</au><au>GROENEN, M. A. M.</au><au>DIBBITS, B. W.</au><au>KOMEN, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SNP marker detection and genotyping in tilapia</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2012-09</date><risdate>2012</risdate><volume>12</volume><issue>5</issue><spage>932</spage><epage>941</epage><pages>932-941</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288–305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei’s genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22524158</pmid><doi>10.1111/j.1755-0998.2012.03144.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1755-098X
ispartof Molecular ecology resources, 2012-09, Vol.12 (5), p.932-941
issn 1755-098X
1755-0998
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_432820
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Aquaculture
Brackish
Cichlids - classification
Cichlids - genetics
farmed tilapias
Fish
Genetic diversity
genetic-linkage map
Genotype
growth-performance
lake victoria
Molecular Typing - methods
next generation sequencing
NGS
nile tilapia
Oreochromis niloticus
oreochromis-niloticus l
Polymorphism, Single Nucleotide
Ponds
population genetics
population-structure
salmon oncorhynchus-nerka
single-nucleotide polymorphisms
SNP
sockeye-salmon
Tilapia
title SNP marker detection and genotyping in tilapia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SNP%20marker%20detection%20and%20genotyping%20in%20tilapia&rft.jtitle=Molecular%20ecology%20resources&rft.au=Van%20BERS,%20N.%20E.%20M.&rft.date=2012-09&rft.volume=12&rft.issue=5&rft.spage=932&rft.epage=941&rft.pages=932-941&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/j.1755-0998.2012.03144.x&rft_dat=%3Cproquest_wagen%3E3278637711%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1517415284&rft_id=info:pmid/22524158&rfr_iscdi=true