Loading…
SNP marker detection and genotyping in tilapia
We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the...
Saved in:
Published in: | Molecular ecology resources 2012-09, Vol.12 (5), p.932-941 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03 |
container_end_page | 941 |
container_issue | 5 |
container_start_page | 932 |
container_title | Molecular ecology resources |
container_volume | 12 |
creator | Van BERS, N. E. M. CROOIJMANS, R. P. M. A. GROENEN, M. A. M. DIBBITS, B. W. KOMEN, J. |
description | We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288–305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei’s genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization. |
doi_str_mv | 10.1111/j.1755-0998.2012.03144.x |
format | article |
fullrecord | <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_432820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3278637711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0Eoh_wF1AkLlyS-iuJg8QBVaUtKlugfInLyHEmlZesE-xE3f33ON3tHjjVl7Hk9xmP5iEkYTRj8ZwsM1bmeUqrSmWcMp5RwaTM1k_I4f7h6f6ufh2QoxCWlBa0KuVzcsB5ziXL1SHJbhafk5X2f9AnDY5oRtu7RLsmuUXXj5vButvEumS0nR6sfkGetboL-HJXj8n3D2ffTi_Sq-vzy9P3V6nJWSVTThWjqkJm6rYqUStdFYxp1KVuRNtwVSuUNTValC3yWnGJskAt81YbU9RUHJO32753Os4RZ0AHTntjA_TaQmdrr_0G7iYPrpvLMNUBpOCKz_CbLTz4_u-EYYSVDQa7TjvspwCMClUwRdmjopJTXt5HX_8XXfaTd3ELwHJWxnVyJWNKbVPG9yF4bGHwdjXPyijM7mAJsxaYFcHsDu7dwTqir3YfTPUKmz34ICsG3u2WYjvcPLoxfDpbzLfIp1vehhHXez7Kh6IUZQ4_F-fw9cfvL5X8eANC_ANAwbZz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517415284</pqid></control><display><type>article</type><title>SNP marker detection and genotyping in tilapia</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Van BERS, N. E. M. ; CROOIJMANS, R. P. M. A. ; GROENEN, M. A. M. ; DIBBITS, B. W. ; KOMEN, J.</creator><creatorcontrib>Van BERS, N. E. M. ; CROOIJMANS, R. P. M. A. ; GROENEN, M. A. M. ; DIBBITS, B. W. ; KOMEN, J.</creatorcontrib><description>We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288–305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei’s genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization.</description><identifier>ISSN: 1755-098X</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/j.1755-0998.2012.03144.x</identifier><identifier>PMID: 22524158</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Aquaculture ; Brackish ; Cichlids - classification ; Cichlids - genetics ; farmed tilapias ; Fish ; Genetic diversity ; genetic-linkage map ; Genotype ; growth-performance ; lake victoria ; Molecular Typing - methods ; next generation sequencing ; NGS ; nile tilapia ; Oreochromis niloticus ; oreochromis-niloticus l ; Polymorphism, Single Nucleotide ; Ponds ; population genetics ; population-structure ; salmon oncorhynchus-nerka ; single-nucleotide polymorphisms ; SNP ; sockeye-salmon ; Tilapia</subject><ispartof>Molecular ecology resources, 2012-09, Vol.12 (5), p.932-941</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2012 Blackwell Publishing Ltd.</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03</citedby><cites>FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22524158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van BERS, N. E. M.</creatorcontrib><creatorcontrib>CROOIJMANS, R. P. M. A.</creatorcontrib><creatorcontrib>GROENEN, M. A. M.</creatorcontrib><creatorcontrib>DIBBITS, B. W.</creatorcontrib><creatorcontrib>KOMEN, J.</creatorcontrib><title>SNP marker detection and genotyping in tilapia</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288–305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei’s genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization.</description><subject>Animals</subject><subject>Aquaculture</subject><subject>Brackish</subject><subject>Cichlids - classification</subject><subject>Cichlids - genetics</subject><subject>farmed tilapias</subject><subject>Fish</subject><subject>Genetic diversity</subject><subject>genetic-linkage map</subject><subject>Genotype</subject><subject>growth-performance</subject><subject>lake victoria</subject><subject>Molecular Typing - methods</subject><subject>next generation sequencing</subject><subject>NGS</subject><subject>nile tilapia</subject><subject>Oreochromis niloticus</subject><subject>oreochromis-niloticus l</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Ponds</subject><subject>population genetics</subject><subject>population-structure</subject><subject>salmon oncorhynchus-nerka</subject><subject>single-nucleotide polymorphisms</subject><subject>SNP</subject><subject>sockeye-salmon</subject><subject>Tilapia</subject><issn>1755-098X</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi0Eoh_wF1AkLlyS-iuJg8QBVaUtKlugfInLyHEmlZesE-xE3f33ON3tHjjVl7Hk9xmP5iEkYTRj8ZwsM1bmeUqrSmWcMp5RwaTM1k_I4f7h6f6ufh2QoxCWlBa0KuVzcsB5ziXL1SHJbhafk5X2f9AnDY5oRtu7RLsmuUXXj5vButvEumS0nR6sfkGetboL-HJXj8n3D2ffTi_Sq-vzy9P3V6nJWSVTThWjqkJm6rYqUStdFYxp1KVuRNtwVSuUNTValC3yWnGJskAt81YbU9RUHJO32753Os4RZ0AHTntjA_TaQmdrr_0G7iYPrpvLMNUBpOCKz_CbLTz4_u-EYYSVDQa7TjvspwCMClUwRdmjopJTXt5HX_8XXfaTd3ELwHJWxnVyJWNKbVPG9yF4bGHwdjXPyijM7mAJsxaYFcHsDu7dwTqir3YfTPUKmz34ICsG3u2WYjvcPLoxfDpbzLfIp1vehhHXez7Kh6IUZQ4_F-fw9cfvL5X8eANC_ANAwbZz</recordid><startdate>201209</startdate><enddate>201209</enddate><creator>Van BERS, N. E. M.</creator><creator>CROOIJMANS, R. P. M. A.</creator><creator>GROENEN, M. A. M.</creator><creator>DIBBITS, B. W.</creator><creator>KOMEN, J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>QVL</scope></search><sort><creationdate>201209</creationdate><title>SNP marker detection and genotyping in tilapia</title><author>Van BERS, N. E. M. ; CROOIJMANS, R. P. M. A. ; GROENEN, M. A. M. ; DIBBITS, B. W. ; KOMEN, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Aquaculture</topic><topic>Brackish</topic><topic>Cichlids - classification</topic><topic>Cichlids - genetics</topic><topic>farmed tilapias</topic><topic>Fish</topic><topic>Genetic diversity</topic><topic>genetic-linkage map</topic><topic>Genotype</topic><topic>growth-performance</topic><topic>lake victoria</topic><topic>Molecular Typing - methods</topic><topic>next generation sequencing</topic><topic>NGS</topic><topic>nile tilapia</topic><topic>Oreochromis niloticus</topic><topic>oreochromis-niloticus l</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Ponds</topic><topic>population genetics</topic><topic>population-structure</topic><topic>salmon oncorhynchus-nerka</topic><topic>single-nucleotide polymorphisms</topic><topic>SNP</topic><topic>sockeye-salmon</topic><topic>Tilapia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van BERS, N. E. M.</creatorcontrib><creatorcontrib>CROOIJMANS, R. P. M. A.</creatorcontrib><creatorcontrib>GROENEN, M. A. M.</creatorcontrib><creatorcontrib>DIBBITS, B. W.</creatorcontrib><creatorcontrib>KOMEN, J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>NARCIS:Publications</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van BERS, N. E. M.</au><au>CROOIJMANS, R. P. M. A.</au><au>GROENEN, M. A. M.</au><au>DIBBITS, B. W.</au><au>KOMEN, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SNP marker detection and genotyping in tilapia</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2012-09</date><risdate>2012</risdate><volume>12</volume><issue>5</issue><spage>932</spage><epage>941</epage><pages>932-941</pages><issn>1755-098X</issn><eissn>1755-0998</eissn><abstract>We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288–305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei’s genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22524158</pmid><doi>10.1111/j.1755-0998.2012.03144.x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-098X |
ispartof | Molecular ecology resources, 2012-09, Vol.12 (5), p.932-941 |
issn | 1755-098X 1755-0998 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_432820 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Aquaculture Brackish Cichlids - classification Cichlids - genetics farmed tilapias Fish Genetic diversity genetic-linkage map Genotype growth-performance lake victoria Molecular Typing - methods next generation sequencing NGS nile tilapia Oreochromis niloticus oreochromis-niloticus l Polymorphism, Single Nucleotide Ponds population genetics population-structure salmon oncorhynchus-nerka single-nucleotide polymorphisms SNP sockeye-salmon Tilapia |
title | SNP marker detection and genotyping in tilapia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SNP%20marker%20detection%20and%20genotyping%20in%20tilapia&rft.jtitle=Molecular%20ecology%20resources&rft.au=Van%20BERS,%20N.%20E.%20M.&rft.date=2012-09&rft.volume=12&rft.issue=5&rft.spage=932&rft.epage=941&rft.pages=932-941&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/j.1755-0998.2012.03144.x&rft_dat=%3Cproquest_wagen%3E3278637711%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5194-2081089e1cbf97ea8a9611aea7ad3fd28b8e4b0ca37fe2b824e46ea45facc6b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1517415284&rft_id=info:pmid/22524158&rfr_iscdi=true |