Loading…

Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations

The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed fo...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2013-05, Vol.38 (14), p.5563-5572
Main Authors: Maru, B.T., Bielen, A.A.M., Constantí, M., Medina, F., Kengen, S.W.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3
cites cdi_FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3
container_end_page 5572
container_issue 14
container_start_page 5563
container_title International journal of hydrogen energy
container_volume 38
creator Maru, B.T.
Bielen, A.A.M.
Constantí, M.
Medina, F.
Kengen, S.W.M.
description The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed for batch and chemostat cultivations, respectively. For batch cultivations: i) hydrogen production rates decreased with increasing initial glycerol concentration, ii) growth and hydrogen production was optimal in the pH range of 7–7.5, and iii) a yeast extract concentration of 2 g/l led to optimal hydrogen production. Stable growth could be maintained in a chemostat, however, when dilution rates exceeded 0.025 h−1 glycerol conversion was incomplete. A detailed overview of the catabolic pathway involved in glycerol fermentation to hydrogen by T. maritima is given. Based on comparative genomics the ability to grow on glycerol can be considered as a general trait of Thermotoga species. The exceptional bioenergetics of hydrogen formation from glycerol is discussed. •Glycerol fermentation by T. maritima was studied in batch and chemostat systems.•H2 was produced with a maximum yield of ∼2.8 mol H2 per mol glycerol.•A glycerol fermentation pathway for T. maritima is proposed.•All Thermotoga spp. are proposed to be able to grow on glycerol.•Bioenergetics suggest involvement of reversed electron flow in glycerol conversion.
doi_str_mv 10.1016/j.ijhydene.2013.02.130
format article
fullrecord <record><control><sourceid>elsevier_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_438885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319913005648</els_id><sourcerecordid>S0360319913005648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS0EEkvhLyBfOCbYcdaJewJVUJAqwaGcrbE92XWUtSPbZZV_j5elZy4zh3nfm5lHyHvOWs64_Di3fj5uDgO2HeOiZV3LBXtBdnwcVCP6cXhJdkxI1giu1GvyJueZMT6wXu3IfL9sFlNc6ITphKFA8THQEmm1TPGAgZqNPh7rMJZ4AHqC5Is_wS39meIaMzq6QjmeYaMQHDU-1kPSAYu31MaQvcP01zO_Ja8mWDK--9dvyK-vXx7vvjUPP-6_331-aKxQojSjkZabUaoOJ4ZyFHbgSorJCKcAJ7F3g0MFnYSed5JJicqwvdnD1A3KCCtuyO3V9wz1fB9q0QGS9VlH8HrxJkHa9Pkp6bBc2vpksu7FOI77CssrbFPMOeGk11S_rXrO9CVuPevnuPUlbs06XeOu4IcruEK2sEwJwmXjM90Ngg2S91X36arDGsFvj0ln6zFYdD6hLdpF_79VfwAhbp5P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations</title><source>ScienceDirect Journals</source><creator>Maru, B.T. ; Bielen, A.A.M. ; Constantí, M. ; Medina, F. ; Kengen, S.W.M.</creator><creatorcontrib>Maru, B.T. ; Bielen, A.A.M. ; Constantí, M. ; Medina, F. ; Kengen, S.W.M.</creatorcontrib><description>The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed for batch and chemostat cultivations, respectively. For batch cultivations: i) hydrogen production rates decreased with increasing initial glycerol concentration, ii) growth and hydrogen production was optimal in the pH range of 7–7.5, and iii) a yeast extract concentration of 2 g/l led to optimal hydrogen production. Stable growth could be maintained in a chemostat, however, when dilution rates exceeded 0.025 h−1 glycerol conversion was incomplete. A detailed overview of the catabolic pathway involved in glycerol fermentation to hydrogen by T. maritima is given. Based on comparative genomics the ability to grow on glycerol can be considered as a general trait of Thermotoga species. The exceptional bioenergetics of hydrogen formation from glycerol is discussed. •Glycerol fermentation by T. maritima was studied in batch and chemostat systems.•H2 was produced with a maximum yield of ∼2.8 mol H2 per mol glycerol.•A glycerol fermentation pathway for T. maritima is proposed.•All Thermotoga spp. are proposed to be able to grow on glycerol.•Bioenergetics suggest involvement of reversed electron flow in glycerol conversion.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2013.02.130</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>3-phosphate dehydrogenase ; Alternative fuels. Production and utilization ; anaerobic fermentation ; Applied sciences ; bacteria ; Biohydrogen ; biohydrogen production ; caldicellulosiruptor-saccharolyticus ; Carbon metabolism ; dark fermentation ; embden-meyerhof ; Energy ; escherichia-coli ; Exact sciences and technology ; Fuels ; Glycerol ; Glycerol 3-phosphate dehydrogenase ; Hydrogen ; nucleotide-sequence ; sp-nov ; Thermotoga maritima</subject><ispartof>International journal of hydrogen energy, 2013-05, Vol.38 (14), p.5563-5572</ispartof><rights>2013 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3</citedby><cites>FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27307614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maru, B.T.</creatorcontrib><creatorcontrib>Bielen, A.A.M.</creatorcontrib><creatorcontrib>Constantí, M.</creatorcontrib><creatorcontrib>Medina, F.</creatorcontrib><creatorcontrib>Kengen, S.W.M.</creatorcontrib><title>Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations</title><title>International journal of hydrogen energy</title><description>The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed for batch and chemostat cultivations, respectively. For batch cultivations: i) hydrogen production rates decreased with increasing initial glycerol concentration, ii) growth and hydrogen production was optimal in the pH range of 7–7.5, and iii) a yeast extract concentration of 2 g/l led to optimal hydrogen production. Stable growth could be maintained in a chemostat, however, when dilution rates exceeded 0.025 h−1 glycerol conversion was incomplete. A detailed overview of the catabolic pathway involved in glycerol fermentation to hydrogen by T. maritima is given. Based on comparative genomics the ability to grow on glycerol can be considered as a general trait of Thermotoga species. The exceptional bioenergetics of hydrogen formation from glycerol is discussed. •Glycerol fermentation by T. maritima was studied in batch and chemostat systems.•H2 was produced with a maximum yield of ∼2.8 mol H2 per mol glycerol.•A glycerol fermentation pathway for T. maritima is proposed.•All Thermotoga spp. are proposed to be able to grow on glycerol.•Bioenergetics suggest involvement of reversed electron flow in glycerol conversion.</description><subject>3-phosphate dehydrogenase</subject><subject>Alternative fuels. Production and utilization</subject><subject>anaerobic fermentation</subject><subject>Applied sciences</subject><subject>bacteria</subject><subject>Biohydrogen</subject><subject>biohydrogen production</subject><subject>caldicellulosiruptor-saccharolyticus</subject><subject>Carbon metabolism</subject><subject>dark fermentation</subject><subject>embden-meyerhof</subject><subject>Energy</subject><subject>escherichia-coli</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Glycerol</subject><subject>Glycerol 3-phosphate dehydrogenase</subject><subject>Hydrogen</subject><subject>nucleotide-sequence</subject><subject>sp-nov</subject><subject>Thermotoga maritima</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQhS0EEkvhLyBfOCbYcdaJewJVUJAqwaGcrbE92XWUtSPbZZV_j5elZy4zh3nfm5lHyHvOWs64_Di3fj5uDgO2HeOiZV3LBXtBdnwcVCP6cXhJdkxI1giu1GvyJueZMT6wXu3IfL9sFlNc6ITphKFA8THQEmm1TPGAgZqNPh7rMJZ4AHqC5Is_wS39meIaMzq6QjmeYaMQHDU-1kPSAYu31MaQvcP01zO_Ja8mWDK--9dvyK-vXx7vvjUPP-6_331-aKxQojSjkZabUaoOJ4ZyFHbgSorJCKcAJ7F3g0MFnYSed5JJicqwvdnD1A3KCCtuyO3V9wz1fB9q0QGS9VlH8HrxJkHa9Pkp6bBc2vpksu7FOI77CssrbFPMOeGk11S_rXrO9CVuPevnuPUlbs06XeOu4IcruEK2sEwJwmXjM90Ngg2S91X36arDGsFvj0ln6zFYdD6hLdpF_79VfwAhbp5P</recordid><startdate>20130510</startdate><enddate>20130510</enddate><creator>Maru, B.T.</creator><creator>Bielen, A.A.M.</creator><creator>Constantí, M.</creator><creator>Medina, F.</creator><creator>Kengen, S.W.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>QVL</scope></search><sort><creationdate>20130510</creationdate><title>Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations</title><author>Maru, B.T. ; Bielen, A.A.M. ; Constantí, M. ; Medina, F. ; Kengen, S.W.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3-phosphate dehydrogenase</topic><topic>Alternative fuels. Production and utilization</topic><topic>anaerobic fermentation</topic><topic>Applied sciences</topic><topic>bacteria</topic><topic>Biohydrogen</topic><topic>biohydrogen production</topic><topic>caldicellulosiruptor-saccharolyticus</topic><topic>Carbon metabolism</topic><topic>dark fermentation</topic><topic>embden-meyerhof</topic><topic>Energy</topic><topic>escherichia-coli</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Glycerol</topic><topic>Glycerol 3-phosphate dehydrogenase</topic><topic>Hydrogen</topic><topic>nucleotide-sequence</topic><topic>sp-nov</topic><topic>Thermotoga maritima</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maru, B.T.</creatorcontrib><creatorcontrib>Bielen, A.A.M.</creatorcontrib><creatorcontrib>Constantí, M.</creatorcontrib><creatorcontrib>Medina, F.</creatorcontrib><creatorcontrib>Kengen, S.W.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>NARCIS:Publications</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maru, B.T.</au><au>Bielen, A.A.M.</au><au>Constantí, M.</au><au>Medina, F.</au><au>Kengen, S.W.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2013-05-10</date><risdate>2013</risdate><volume>38</volume><issue>14</issue><spage>5563</spage><epage>5572</epage><pages>5563-5572</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed for batch and chemostat cultivations, respectively. For batch cultivations: i) hydrogen production rates decreased with increasing initial glycerol concentration, ii) growth and hydrogen production was optimal in the pH range of 7–7.5, and iii) a yeast extract concentration of 2 g/l led to optimal hydrogen production. Stable growth could be maintained in a chemostat, however, when dilution rates exceeded 0.025 h−1 glycerol conversion was incomplete. A detailed overview of the catabolic pathway involved in glycerol fermentation to hydrogen by T. maritima is given. Based on comparative genomics the ability to grow on glycerol can be considered as a general trait of Thermotoga species. The exceptional bioenergetics of hydrogen formation from glycerol is discussed. •Glycerol fermentation by T. maritima was studied in batch and chemostat systems.•H2 was produced with a maximum yield of ∼2.8 mol H2 per mol glycerol.•A glycerol fermentation pathway for T. maritima is proposed.•All Thermotoga spp. are proposed to be able to grow on glycerol.•Bioenergetics suggest involvement of reversed electron flow in glycerol conversion.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2013.02.130</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2013-05, Vol.38 (14), p.5563-5572
issn 0360-3199
1879-3487
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_438885
source ScienceDirect Journals
subjects 3-phosphate dehydrogenase
Alternative fuels. Production and utilization
anaerobic fermentation
Applied sciences
bacteria
Biohydrogen
biohydrogen production
caldicellulosiruptor-saccharolyticus
Carbon metabolism
dark fermentation
embden-meyerhof
Energy
escherichia-coli
Exact sciences and technology
Fuels
Glycerol
Glycerol 3-phosphate dehydrogenase
Hydrogen
nucleotide-sequence
sp-nov
Thermotoga maritima
title Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycerol%20fermentation%20to%20hydrogen%20by%20Thermotoga%20maritima:%20Proposed%20pathway%20and%20bioenergetic%20considerations&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Maru,%20B.T.&rft.date=2013-05-10&rft.volume=38&rft.issue=14&rft.spage=5563&rft.epage=5572&rft.pages=5563-5572&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2013.02.130&rft_dat=%3Celsevier_wagen%3ES0360319913005648%3C/elsevier_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true