Loading…
Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations
The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed fo...
Saved in:
Published in: | International journal of hydrogen energy 2013-05, Vol.38 (14), p.5563-5572 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3 |
container_end_page | 5572 |
container_issue | 14 |
container_start_page | 5563 |
container_title | International journal of hydrogen energy |
container_volume | 38 |
creator | Maru, B.T. Bielen, A.A.M. Constantí, M. Medina, F. Kengen, S.W.M. |
description | The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed for batch and chemostat cultivations, respectively. For batch cultivations: i) hydrogen production rates decreased with increasing initial glycerol concentration, ii) growth and hydrogen production was optimal in the pH range of 7–7.5, and iii) a yeast extract concentration of 2 g/l led to optimal hydrogen production. Stable growth could be maintained in a chemostat, however, when dilution rates exceeded 0.025 h−1 glycerol conversion was incomplete. A detailed overview of the catabolic pathway involved in glycerol fermentation to hydrogen by T. maritima is given. Based on comparative genomics the ability to grow on glycerol can be considered as a general trait of Thermotoga species. The exceptional bioenergetics of hydrogen formation from glycerol is discussed.
•Glycerol fermentation by T. maritima was studied in batch and chemostat systems.•H2 was produced with a maximum yield of ∼2.8 mol H2 per mol glycerol.•A glycerol fermentation pathway for T. maritima is proposed.•All Thermotoga spp. are proposed to be able to grow on glycerol.•Bioenergetics suggest involvement of reversed electron flow in glycerol conversion. |
doi_str_mv | 10.1016/j.ijhydene.2013.02.130 |
format | article |
fullrecord | <record><control><sourceid>elsevier_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_438885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319913005648</els_id><sourcerecordid>S0360319913005648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS0EEkvhLyBfOCbYcdaJewJVUJAqwaGcrbE92XWUtSPbZZV_j5elZy4zh3nfm5lHyHvOWs64_Di3fj5uDgO2HeOiZV3LBXtBdnwcVCP6cXhJdkxI1giu1GvyJueZMT6wXu3IfL9sFlNc6ITphKFA8THQEmm1TPGAgZqNPh7rMJZ4AHqC5Is_wS39meIaMzq6QjmeYaMQHDU-1kPSAYu31MaQvcP01zO_Ja8mWDK--9dvyK-vXx7vvjUPP-6_331-aKxQojSjkZabUaoOJ4ZyFHbgSorJCKcAJ7F3g0MFnYSed5JJicqwvdnD1A3KCCtuyO3V9wz1fB9q0QGS9VlH8HrxJkHa9Pkp6bBc2vpksu7FOI77CssrbFPMOeGk11S_rXrO9CVuPevnuPUlbs06XeOu4IcruEK2sEwJwmXjM90Ngg2S91X36arDGsFvj0ln6zFYdD6hLdpF_79VfwAhbp5P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations</title><source>ScienceDirect Journals</source><creator>Maru, B.T. ; Bielen, A.A.M. ; Constantí, M. ; Medina, F. ; Kengen, S.W.M.</creator><creatorcontrib>Maru, B.T. ; Bielen, A.A.M. ; Constantí, M. ; Medina, F. ; Kengen, S.W.M.</creatorcontrib><description>The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed for batch and chemostat cultivations, respectively. For batch cultivations: i) hydrogen production rates decreased with increasing initial glycerol concentration, ii) growth and hydrogen production was optimal in the pH range of 7–7.5, and iii) a yeast extract concentration of 2 g/l led to optimal hydrogen production. Stable growth could be maintained in a chemostat, however, when dilution rates exceeded 0.025 h−1 glycerol conversion was incomplete. A detailed overview of the catabolic pathway involved in glycerol fermentation to hydrogen by T. maritima is given. Based on comparative genomics the ability to grow on glycerol can be considered as a general trait of Thermotoga species. The exceptional bioenergetics of hydrogen formation from glycerol is discussed.
•Glycerol fermentation by T. maritima was studied in batch and chemostat systems.•H2 was produced with a maximum yield of ∼2.8 mol H2 per mol glycerol.•A glycerol fermentation pathway for T. maritima is proposed.•All Thermotoga spp. are proposed to be able to grow on glycerol.•Bioenergetics suggest involvement of reversed electron flow in glycerol conversion.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2013.02.130</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>3-phosphate dehydrogenase ; Alternative fuels. Production and utilization ; anaerobic fermentation ; Applied sciences ; bacteria ; Biohydrogen ; biohydrogen production ; caldicellulosiruptor-saccharolyticus ; Carbon metabolism ; dark fermentation ; embden-meyerhof ; Energy ; escherichia-coli ; Exact sciences and technology ; Fuels ; Glycerol ; Glycerol 3-phosphate dehydrogenase ; Hydrogen ; nucleotide-sequence ; sp-nov ; Thermotoga maritima</subject><ispartof>International journal of hydrogen energy, 2013-05, Vol.38 (14), p.5563-5572</ispartof><rights>2013 Hydrogen Energy Publications, LLC.</rights><rights>2014 INIST-CNRS</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3</citedby><cites>FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27307614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maru, B.T.</creatorcontrib><creatorcontrib>Bielen, A.A.M.</creatorcontrib><creatorcontrib>Constantí, M.</creatorcontrib><creatorcontrib>Medina, F.</creatorcontrib><creatorcontrib>Kengen, S.W.M.</creatorcontrib><title>Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations</title><title>International journal of hydrogen energy</title><description>The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed for batch and chemostat cultivations, respectively. For batch cultivations: i) hydrogen production rates decreased with increasing initial glycerol concentration, ii) growth and hydrogen production was optimal in the pH range of 7–7.5, and iii) a yeast extract concentration of 2 g/l led to optimal hydrogen production. Stable growth could be maintained in a chemostat, however, when dilution rates exceeded 0.025 h−1 glycerol conversion was incomplete. A detailed overview of the catabolic pathway involved in glycerol fermentation to hydrogen by T. maritima is given. Based on comparative genomics the ability to grow on glycerol can be considered as a general trait of Thermotoga species. The exceptional bioenergetics of hydrogen formation from glycerol is discussed.
•Glycerol fermentation by T. maritima was studied in batch and chemostat systems.•H2 was produced with a maximum yield of ∼2.8 mol H2 per mol glycerol.•A glycerol fermentation pathway for T. maritima is proposed.•All Thermotoga spp. are proposed to be able to grow on glycerol.•Bioenergetics suggest involvement of reversed electron flow in glycerol conversion.</description><subject>3-phosphate dehydrogenase</subject><subject>Alternative fuels. Production and utilization</subject><subject>anaerobic fermentation</subject><subject>Applied sciences</subject><subject>bacteria</subject><subject>Biohydrogen</subject><subject>biohydrogen production</subject><subject>caldicellulosiruptor-saccharolyticus</subject><subject>Carbon metabolism</subject><subject>dark fermentation</subject><subject>embden-meyerhof</subject><subject>Energy</subject><subject>escherichia-coli</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Glycerol</subject><subject>Glycerol 3-phosphate dehydrogenase</subject><subject>Hydrogen</subject><subject>nucleotide-sequence</subject><subject>sp-nov</subject><subject>Thermotoga maritima</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFv1DAQhS0EEkvhLyBfOCbYcdaJewJVUJAqwaGcrbE92XWUtSPbZZV_j5elZy4zh3nfm5lHyHvOWs64_Di3fj5uDgO2HeOiZV3LBXtBdnwcVCP6cXhJdkxI1giu1GvyJueZMT6wXu3IfL9sFlNc6ITphKFA8THQEmm1TPGAgZqNPh7rMJZ4AHqC5Is_wS39meIaMzq6QjmeYaMQHDU-1kPSAYu31MaQvcP01zO_Ja8mWDK--9dvyK-vXx7vvjUPP-6_331-aKxQojSjkZabUaoOJ4ZyFHbgSorJCKcAJ7F3g0MFnYSed5JJicqwvdnD1A3KCCtuyO3V9wz1fB9q0QGS9VlH8HrxJkHa9Pkp6bBc2vpksu7FOI77CssrbFPMOeGk11S_rXrO9CVuPevnuPUlbs06XeOu4IcruEK2sEwJwmXjM90Ngg2S91X36arDGsFvj0ln6zFYdD6hLdpF_79VfwAhbp5P</recordid><startdate>20130510</startdate><enddate>20130510</enddate><creator>Maru, B.T.</creator><creator>Bielen, A.A.M.</creator><creator>Constantí, M.</creator><creator>Medina, F.</creator><creator>Kengen, S.W.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>QVL</scope></search><sort><creationdate>20130510</creationdate><title>Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations</title><author>Maru, B.T. ; Bielen, A.A.M. ; Constantí, M. ; Medina, F. ; Kengen, S.W.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3-phosphate dehydrogenase</topic><topic>Alternative fuels. Production and utilization</topic><topic>anaerobic fermentation</topic><topic>Applied sciences</topic><topic>bacteria</topic><topic>Biohydrogen</topic><topic>biohydrogen production</topic><topic>caldicellulosiruptor-saccharolyticus</topic><topic>Carbon metabolism</topic><topic>dark fermentation</topic><topic>embden-meyerhof</topic><topic>Energy</topic><topic>escherichia-coli</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Glycerol</topic><topic>Glycerol 3-phosphate dehydrogenase</topic><topic>Hydrogen</topic><topic>nucleotide-sequence</topic><topic>sp-nov</topic><topic>Thermotoga maritima</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maru, B.T.</creatorcontrib><creatorcontrib>Bielen, A.A.M.</creatorcontrib><creatorcontrib>Constantí, M.</creatorcontrib><creatorcontrib>Medina, F.</creatorcontrib><creatorcontrib>Kengen, S.W.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>NARCIS:Publications</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maru, B.T.</au><au>Bielen, A.A.M.</au><au>Constantí, M.</au><au>Medina, F.</au><au>Kengen, S.W.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2013-05-10</date><risdate>2013</risdate><volume>38</volume><issue>14</issue><spage>5563</spage><epage>5572</epage><pages>5563-5572</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>The production of biohydrogen from glycerol, by the hyperthermophilic bacterium Thermotoga maritima DSM 3109, was investigated in batch and chemostat systems. T. maritima converted glycerol to mainly acetate, CO2 and H2. Maximal hydrogen yields of 2.84 and 2.41 hydrogen per glycerol were observed for batch and chemostat cultivations, respectively. For batch cultivations: i) hydrogen production rates decreased with increasing initial glycerol concentration, ii) growth and hydrogen production was optimal in the pH range of 7–7.5, and iii) a yeast extract concentration of 2 g/l led to optimal hydrogen production. Stable growth could be maintained in a chemostat, however, when dilution rates exceeded 0.025 h−1 glycerol conversion was incomplete. A detailed overview of the catabolic pathway involved in glycerol fermentation to hydrogen by T. maritima is given. Based on comparative genomics the ability to grow on glycerol can be considered as a general trait of Thermotoga species. The exceptional bioenergetics of hydrogen formation from glycerol is discussed.
•Glycerol fermentation by T. maritima was studied in batch and chemostat systems.•H2 was produced with a maximum yield of ∼2.8 mol H2 per mol glycerol.•A glycerol fermentation pathway for T. maritima is proposed.•All Thermotoga spp. are proposed to be able to grow on glycerol.•Bioenergetics suggest involvement of reversed electron flow in glycerol conversion.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2013.02.130</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2013-05, Vol.38 (14), p.5563-5572 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_438885 |
source | ScienceDirect Journals |
subjects | 3-phosphate dehydrogenase Alternative fuels. Production and utilization anaerobic fermentation Applied sciences bacteria Biohydrogen biohydrogen production caldicellulosiruptor-saccharolyticus Carbon metabolism dark fermentation embden-meyerhof Energy escherichia-coli Exact sciences and technology Fuels Glycerol Glycerol 3-phosphate dehydrogenase Hydrogen nucleotide-sequence sp-nov Thermotoga maritima |
title | Glycerol fermentation to hydrogen by Thermotoga maritima: Proposed pathway and bioenergetic considerations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycerol%20fermentation%20to%20hydrogen%20by%20Thermotoga%20maritima:%20Proposed%20pathway%20and%20bioenergetic%20considerations&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Maru,%20B.T.&rft.date=2013-05-10&rft.volume=38&rft.issue=14&rft.spage=5563&rft.epage=5572&rft.pages=5563-5572&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2013.02.130&rft_dat=%3Celsevier_wagen%3ES0360319913005648%3C/elsevier_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-8b6c1b8692ef0e683c71963fb3d9aef35d7de9a26a4126066e9b05b5af279b3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |